Anthropogenic habitat alteration and climate change are two well-known contributors to biodiversity loss through changes to species distribution and abundance; yet, disentangling the effects of these two factors is often hindered by their inherent confound across both space and time. We leveraged a contrast in habitat alteration associated with the jurisdictional boundary between two Canadian provinces to evaluate the relative effects of spatial variation in habitat alteration and climate on white-tailed deer (Odocoileus virginianus) densities. White-tailed deer are an invading ungulate across much of North America, whose expansion into Canada's boreal forest is implicated in the decline of boreal caribou (Rangifer tarandus caribou), a species listed as Threatened in Canada. We estimated white-tailed deer densities using 300 remote cameras across 12 replicated 50 km landscapes over 5 years. White-tailed deer densities were significantly lower in areas where winter severity was higher. For example, predicted deer densities declined from 1.83 to 0.35 deer/km when winter severity increased from the lowest value to the median value. There was a tendency for densities to increase with increasing habitat alteration; however, the magnitude of this effect was approximately half that of climate. Our findings suggest that climate is the primary driver of white-tailed deer populations; however, understanding the mechanisms underpinning this relationship requires further study of over-winter survival and fecundity. Long-term monitoring at the invasion front is needed to evaluate the drivers of abundance over time, particularly given the unpredictability of climate change and increasing prevalence of extreme weather events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17286 | DOI Listing |
Nat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China.
Denitrification and anaerobic ammonium oxidation (anammox) are the major microbial processes responsible for global nitrogen (N) loss. Yet, the relative contributions of denitrification and anammox to N loss across contrasting terrestrial and aquatic ecosystems worldwide remain unclear, hampering capacities to predict the human alterations in the global N cycle. Here, a global synthesis including 3240 observations from 199 published isotope pairing studies is conducted and finds that denitrification governs microbial N loss globally (79.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
Ecological interactions are foundational to our understanding of community composition and function. While interactions are known to change depending on the environmental context, it has generally been assumed that external environmental factors are responsible for driving these dependencies. Here, we derive a theoretical framework which instead focuses on how intrinsic environmental changes caused by the organisms themselves alter interaction values.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Cellular and Molecular Biology, Harvard University, Cambridge, Massachusetts, USA.
Climate change is intensifying extreme weather events, with severe implications for ecosystem dynamics. A key behavioural mechanism whereby animals may cope with such events is by altering their social structure, which in turn could influence epidemic risk. However, how and to what extent natural disasters affect disease risk via changes in sociality remains unexplored in animal populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!