Background: RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function.
Methods: Body weight of mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing.
Results: Genome-wide association data linked rare human variants with body mass index and glucose handling. Changes in glucose tolerance were observed in male mice at 18 months of age. In WT (wild-type) and null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age.
Conclusions: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209784 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.124.320969 | DOI Listing |
Chin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Lipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
BMC Nephrol
January 2025
Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.
View Article and Find Full Text PDFNat Med
January 2025
Data Science, Novo Nordisk A/S, Søborg, Denmark.
Obesity and type 2 diabetes are prevalent chronic diseases effectively managed by semaglutide. Here we studied the effects of semaglutide on the circulating proteome using baseline and end-of-treatment serum samples from two phase 3 trials in participants with overweight or obesity, with or without diabetes: STEP 1 (n = 1,311) and STEP 2 (n = 645). We identified evidence supporting broad effects of semaglutide, implicating processes related to body weight regulation, glycemic control, lipid metabolism and inflammatory pathways.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!