Molecular mechanisms of mitochondria-mediated ferroptosis: a potential target for antimalarial interventions.

Front Cell Dev Biol

Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria.

Published: April 2024

AI Article Synopsis

  • * Mitochondria play a crucial role in ferroptosis by influencing energy production and generating reactive oxygen species, and changes in their structure and function are linked to this type of cell death.
  • * The review discusses how mitochondria impact ferroptosis mechanisms, particularly in malaria parasites, suggesting that targeting these organelles could enhance antiparasitic treatments by disrupting redox balance.

Article Abstract

Ferroptosis is an iron-dependent form of regulated cell death characterized by glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) inactivation, and the build-up of lipotoxic reactive species. Ferroptosis-targeted induction is a promising therapeutic approach for addressing antimalarial drug resistance. In addition to being the primary source of intracellular energy supply and reactive oxygen species (ROS) generation, mitochondria actively participate in diverse forms of regulated cell death, including ferroptosis. Altered mitochondrial morphology and functionality are attributed to ferroptosis. Diverse mitochondria-related proteins and metabolic activities have been implicated in fine-tuning the action of ferroptosis inducers. Herein, we review recent progress in this evolving field, elucidating the numerous mechanisms by which mitochondria regulate ferroptosis and giving an insight into the role of the organelle in ferroptosis. Additionally, we present an overview of how mitochondria contribute to ferroptosis in malaria. Furthermore, we attempt to shed light on an inclusive perspective on how targeting malaria parasites' mitochondrion and attacking redox homeostasis is anticipated to induce ferroptosis-mediated antiparasitic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11039840PMC
http://dx.doi.org/10.3389/fcell.2024.1374735DOI Listing

Publication Analysis

Top Keywords

ferroptosis
8
regulated cell
8
cell death
8
molecular mechanisms
4
mechanisms mitochondria-mediated
4
mitochondria-mediated ferroptosis
4
ferroptosis potential
4
potential target
4
target antimalarial
4
antimalarial interventions
4

Similar Publications

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Background: Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC).

Subjects: To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.

View Article and Find Full Text PDF

Ferroptosis is linked to various pathological conditions; however, the specific targets and mechanisms through which traditional Chinese medicine influences ischemic stroke (IS)-induced ferroptosis remain poorly understood. In this study, data from the Gene Expression Omnibus and disease target databases (OMIM, GeneCards, DisGeNet, TTD, and DrugBank) were integrated with ferroptosis-related gene datasets. To identify key molecular targets of Chuanxiong Rhizoma (CX), drug ingredient databases, including PubChem and TCMBank, were employed to map CX-related targets (CX-DEGs-FRG and CX-IS-FRG).

View Article and Find Full Text PDF

Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!