A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of Catalyst Immediate Environment Enables Acidic Electrochemical Benzyl Alcohol Oxidation to Benzaldehyde. | LitMetric

Electrocatalytic alcohol oxidation in acid offers a promising alternative to the kinetically sluggish water oxidation reaction toward low-energy H generation. However, electrocatalysts driving active and selective acidic alcohol electrochemical transformation are still scarce. In this work, we demonstrate efficient alcohol-to-aldehyde conversion achieved by reticular chemistry-based modification of the catalyst's immediate environment. Specifically, coating a Bi-based electrocatalyst with a thin layer of metal-organic framework (MOF) substantially improves its performance toward benzyl alcohol electro-oxidation to benzaldehyde in a 0.1 M HSO electrolyte. Detailed analysis reveals that the MOF adlayer influences catalysis by increasing the reactivity of surface hydroxides as well as weakening the catalyst-benzaldehyde binding strength. In turn, low-potential (0.65 V) cathodic H evolution was obtained through coupling it with anodic benzyl alcohol electro-oxidation. Consequently, the presented approach could be implemented in a wide range of electrocatalytic oxidation reactions for energy-conversion application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036388PMC
http://dx.doi.org/10.1021/acscatal.4c00476DOI Listing

Publication Analysis

Top Keywords

benzyl alcohol
12
alcohol oxidation
8
alcohol electro-oxidation
8
alcohol
5
regulation catalyst
4
catalyst environment
4
environment enables
4
enables acidic
4
acidic electrochemical
4
electrochemical benzyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!