Tadalafil (TDL) has poor bioavailability due to the less aqueous solubility and bitter taste. Oral solid dosage forms, especially tablets, have a broad market worldwide. Constraints of tablets are a long process, pollution, high processing cost, and requiring more excipient. The research was performed to optimize an eco-friendly immediate-acting pastille of TDL to put forward an alternate formulation to a tablet using advanced data mining tools. Another objective is to assess the taste masking of TDL using the Brief Access Taste Aversion BATA) model. The amount of PEG-4000, Polyox N-10, and Kyron T-314 were chosen as critical material attributes from failure mode effect analysis. Box-Behnken design (BBD) was utilized to optimize the pastilles and ascertained the significant impact of chosen variables on disintegration time and % CDR at 10 min. The control strategy and optimal region were located using an overlay plot. The pastilles were able to release the drug within 15 min due to faster disintegration. The formulated pastilles were of uniform size, shape, and mechanical strength. The bitter taste of TDL was masked and confirmed by the BATA model. The newer formulation may be helpful in the industry due to its eco-friendly, single-step, and economical process. It unlocks a new direction in the field of oral solid dosage form as an alternative to tablets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040062PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e29543DOI Listing

Publication Analysis

Top Keywords

bitter taste
8
oral solid
8
solid dosage
8
bata model
8
taste
5
investigating functionality
4
functionality taste
4
taste assessment
4
assessment eco-friendly
4
eco-friendly tadalafil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!