A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual Brønsted acidic-basic function immobilized on the 3D mesoporous polycalix [4]resorcinarene: As a highly recyclable catalyst for the synthesis of spiro acenaphthylene/indene heterocycles. | LitMetric

In this study, a novel dual Brønsted acidic-basic nano-scale porous organic polymer catalyst, PC4RA@SiPr-Pip-BuSO3H, was synthesized through various steps: preparation of a 3D network of polycalix, modification with (3-chloropropyl)-trimethoxysilane, then functionalization of polymer with piperazine and -butyl sulfonic acid under the provided conditions. The catalyst characterization was performed by FT-IR, TGA, EDS, elemental mapping, PXRD, TEM, and FE-SEM analyses, confirming high chemical stability, activity, recoverability, and excellent covalent anchoring of functional groups. So, the designed catalyst was utilized for preparing spiro-acenaphthylene and amino-spiroindene heterocycles, providing good performance with a high yield of the corresponding products. Accordingly, this catalyst can be used in different organic transformations. Necessary experiments were conducted for the recyclability test of the polymeric catalyst, and the results showed the PC4RA@SiPr-Pip-BuSO3H catalyst can be reused 10 times without any decrease in its activity or quality with excellent stability. The structure of resultant spiro heterocycles was confirmed using 1H NMR, 13C NMR, and FT-IR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040065PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e29277DOI Listing

Publication Analysis

Top Keywords

dual brønsted
8
brønsted acidic-basic
8
catalyst pc4ra@sipr-pip-buso3h
8
catalyst
7
acidic-basic function
4
function immobilized
4
immobilized mesoporous
4
mesoporous polycalix
4
polycalix [4]resorcinarene
4
[4]resorcinarene highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!