A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Particulate matter 1µm (PM) dataset collected by low-cost sensors in residential and industrial areas at the neighborhood level. | LitMetric

The incursion of low-cost sensors (LCS) for monitoring particulate matter in different fractions of particles (PM, PM, and PM) allows the characterization of the concentration levels of specific sources or events, including the analysis of ultrafine fractions (PM). Several studies have documented adverse effects on human health due to exposure to PM, such as morbidity and mortality from respiratory, cardiovascular, and, in some cases, carcinogenic diseases. Hence, studying the concentration levels and the sources that cause PM is imperative. LCS is an alternative to understanding contaminant concentration levels by considering spatial and temporal community dynamics by monitoring critical zones. Furthermore, collecting and managing large amounts of data through automatic processing and analysis generates information to support decision-making to reduce exposure and risks to people's health. The dataset presents the concentration level of PM (µg/m) calculated from the particles of size 0.03 µm, 0.05 µm, and 1.0 µm recorded and counted by the sensor in a sample per minute for 24 h for seven continuous days. The values of the meteorological factors of relative humidity, temperature, and heat index complement these attributes. The dataset comprises records collected (in the same period) at four particulate matter monitoring stations, which compose an LCS network supported by Internet of Things (IoT) technologies. The data collection points were located in different areas of Reynosa, Mexico, considering strategic places for monitoring environmental pollution, such as industrial parks, residential areas, avenues with high vehicular traffic and transportation of heavy cargo, and an airport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11039941PMC
http://dx.doi.org/10.1016/j.dib.2024.110411DOI Listing

Publication Analysis

Top Keywords

particulate matter
12
concentration levels
12
low-cost sensors
8
matter 1µm
4
1µm dataset
4
dataset collected
4
collected low-cost
4
sensors residential
4
residential industrial
4
industrial areas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!