Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Emotional recognition is a pivotal research domain in computer and cognitive science. Recent advancements have led to various emotion recognition methods, leveraging data from diverse sources like speech, facial expressions, electroencephalogram (EEG), electrocardiogram, and eye tracking (ET). This article introduces a novel emotion recognition framework, primarily targeting the analysis of users' psychological reactions and stimuli. It is important to note that the stimuli eliciting emotional responses are as critical as the responses themselves. Hence, our approach synergizes stimulus data with physical and physiological signals, pioneering a multimodal method for emotional cognition. Our proposed framework unites stimulus source data with physiological signals, aiming to enhance the accuracy and robustness of emotion recognition through data integration. We initiated an emotional cognition experiment to gather EEG and ET data alongside recording emotional responses. Building on this, we developed the Emotion-Multimodal Fusion Neural Network (E-MFNN), optimized for multimodal data fusion to process both stimulus and physiological data. We conducted extensive comparisons between our framework's outcomes and those from existing models, also assessing various algorithmic approaches within our framework. This comparison underscores our framework's efficacy in multimodal emotion recognition. The source code is publicly available at https://figshare.com/s/8833d837871c78542b29.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041955 | PMC |
http://dx.doi.org/10.7717/peerj-cs.1977 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!