A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

E-MFNN: an emotion-multimodal fusion neural network framework for emotion recognition. | LitMetric

Emotional recognition is a pivotal research domain in computer and cognitive science. Recent advancements have led to various emotion recognition methods, leveraging data from diverse sources like speech, facial expressions, electroencephalogram (EEG), electrocardiogram, and eye tracking (ET). This article introduces a novel emotion recognition framework, primarily targeting the analysis of users' psychological reactions and stimuli. It is important to note that the stimuli eliciting emotional responses are as critical as the responses themselves. Hence, our approach synergizes stimulus data with physical and physiological signals, pioneering a multimodal method for emotional cognition. Our proposed framework unites stimulus source data with physiological signals, aiming to enhance the accuracy and robustness of emotion recognition through data integration. We initiated an emotional cognition experiment to gather EEG and ET data alongside recording emotional responses. Building on this, we developed the Emotion-Multimodal Fusion Neural Network (E-MFNN), optimized for multimodal data fusion to process both stimulus and physiological data. We conducted extensive comparisons between our framework's outcomes and those from existing models, also assessing various algorithmic approaches within our framework. This comparison underscores our framework's efficacy in multimodal emotion recognition. The source code is publicly available at https://figshare.com/s/8833d837871c78542b29.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041955PMC
http://dx.doi.org/10.7717/peerj-cs.1977DOI Listing

Publication Analysis

Top Keywords

emotion recognition
20
emotion-multimodal fusion
8
fusion neural
8
neural network
8
emotional responses
8
physiological signals
8
emotional cognition
8
data
7
recognition
6
emotion
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!