Detecting cyberbullying using deep learning techniques: a pre-trained glove and focal loss technique.

PeerJ Comput Sci

Department of Computer Science, Faculty of Computers and Information, Minia University, EL-Minia, Egypt.

Published: March 2024

This study investigates the effectiveness of various deep learning and classical machine learning techniques in identifying instances of cyberbullying. The study compares the performance of five classical machine learning algorithms and three deep learning models. The data undergoes pre-processing, including text cleaning, tokenization, stemming, and stop word removal. The experiment uses accuracy, precision, recall, and F1 score metrics to evaluate the performance of the algorithms on the dataset. The results show that the proposed technique achieves high accuracy, precision, and F1 score values, with the Focal Loss algorithm achieving the highest accuracy of 99% and the highest precision of 86.72%. However, the recall values were relatively low for most algorithms, indicating that they struggled to identify all relevant data. Additionally, the study proposes a technique using a convolutional neural network with a bidirectional long short-term memory layer, trained on a pre-processed dataset of tweets using GloVe word embeddings and the focal loss function. The model achieved high accuracy, precision, and F1 score values, with the GRU algorithm achieving the highest accuracy of 97.0% and the NB algorithm achieving the highest precision of 96.6%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042001PMC
http://dx.doi.org/10.7717/peerj-cs.1961DOI Listing

Publication Analysis

Top Keywords

deep learning
12
focal loss
12
accuracy precision
12
algorithm achieving
12
achieving highest
12
learning techniques
8
classical machine
8
machine learning
8
high accuracy
8
precision score
8

Similar Publications

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

Eur J Nucl Med Mol Imaging

January 2025

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.

Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.

Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.

View Article and Find Full Text PDF

In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalised medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted.

View Article and Find Full Text PDF

Automatic multimodal registration of cone-beam computed tomography and intraoral scans: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.

Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.

Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.

View Article and Find Full Text PDF

Mining versatile feruloyl esterases: phylogenetic classification, structural features, and deep learning model.

Bioresour Bioprocess

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.

Feruloyl esterases (FEs, EC 3.1.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!