In the literature, there is consistent evidence related to the influence of chewing on brain functions, either from experimental models or in humans. In the case of humans, most results are restricted to functional tests, lacking cellular or molecular evidence. In the described method, the possibility of using experimental models is presented, as well as the mimicry of deprivation and rehabilitation of masticatory activity and without stress impact. By opting for the use of mash feed, instead of extracting or implanting an intraoral device, alternations between restriction and rehabilitation of mastication were imposed on murine models. The animals completed various temporal windows, with aging also representing a potential factor for translational dementia associations. Additionally, animals were segregated into environments characterized as either standard, simulating a sedentary lifestyle, or enriched, rich in sensorimotor and visuospatial stimulation. Thus, it was possible to study the influence of changes in masticatory activity, associated with aging and environmental enrichment, on cells from subregions of the hippocampus, as well as on performance in tests of learning and spatial memory.•Animal model for masticatory activity alteration;•Masticatory deprivation and rehabilitation, and•Models to study the interaction among masticatory activity, aging and enrichment environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041849 | PMC |
http://dx.doi.org/10.1016/j.mex.2024.102701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!