Alpine wetlands are critical ecosystems for global carbon (C) cycling and climate change mitigation. Ecological restoration projects for alpine grazing wetlands are urgently needed, especially due to their critical role as carbon (C) sinks. However, the fate of the C pool in alpine wetlands after restoration from grazing remains unclear. In this study, soil samples from both grazed and restored wetlands in Zoige (near Hongyuan County, Sichuan Province, China) were collected to analyze soil organic carbon (SOC) fractions, arbuscular mycorrhizal fungi (AMF), soil properties, and plant biomass. Moreover, the Tea Bag Index (TBI) was applied to assess the initial decomposition rate () and stabilization factor (), providing a novel perspective on SOC dynamics. The results of this research revealed that the mineral-associated organic carbon (MAOC) was 1.40 times higher in restored sites compared to grazed sites, although no significant difference in particulate organic carbon (POC) was detected between the two site types. Furthermore, the increased MAOC after restoration exhibited a significant positive correlation with various parameters including , C and N content, aboveground biomass, WSOC, AMF diversity, and NH. This indicates that restoration significantly increases plant primary production, litter turnover, soil characteristics, and AMF diversity, thereby enhancing the C stabilization capacity of alpine wetland soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11039953 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1376418 | DOI Listing |
Sci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.
Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.
In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China.
E2 elimination and SN2 substitution reactions are of central importance in preparative organic synthesis due to their stereospecificity. Herein, atomistic dynamics of a prototype reaction of ethyl chloride with hydroxide ion are uncovered that show strikingly distinct features from the case with fluoride anion. Chemical dynamics simulations reproduce the experimental reaction rate and reveal that the E2 proceeding through a direct elimination mechanism dominates over SN2 for the hydroxide ion reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!