Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery, and basic research. However, established technologies such as chimeric antigen receptors (CARs) can only detect immobilized antigens, have limited output scope, and lack built-in drug control. Here, we engineer synthetic G protein-coupled receptors (GPCRs) capable of driving a wide range of native or nonnative cellular processes in response to user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating Programmable Antigen-gated G protein-coupled Engineered Receptors (PAGERs). We create PAGERs responsive to more than a dozen biologically and therapeutically important soluble and cell surface antigens, in a single step, from corresponding nanobody binders. Different PAGER scaffolds permit antigen binding to drive transgene expression, real-time fluorescence, or endogenous G protein activation, enabling control of cytosolic Ca , lipid signaling, cAMP, and neuronal activity. Due to its modular design and generalizability, we expect PAGER to have broad utility in discovery and translational science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042292PMC
http://dx.doi.org/10.1101/2024.04.15.589622DOI Listing

Publication Analysis

Top Keywords

synthetic protein-coupled
8
protein-coupled receptors
8
antigen binding
8
receptors
5
antigen
5
receptors programmable
4
programmable sensing
4
sensing control
4
control cell
4
cell behavior
4

Similar Publications

A comprehensive review of GPR84: A novel player in pathophysiology and treatment.

Int J Biol Macromol

January 2025

Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning Province, China. Electronic address:

G protein-coupled receptor 84 (GPR84), a member of the highly conserved rhodopsin-like superfamily, represents a promising target for therapeutic drug development. Its distinctive expression profiles in adipocytes, gut endocrine cells, and various myeloid immune cells underscore its critical roles in fundamental physiological processes, particularly in metabolic regulation and immune responses. Over the past two decades, emerging research has demonstrated that GPR84 regulates immune cell chemotaxis, phagocytosis, and inflammatory responses, playing a pivotal role in metabolic disorders, inflammatory diseases, and organ fibrosis.

View Article and Find Full Text PDF

Cannabinoid receptor 1 ligands: Biased signaling mechanisms driving functionally selective drug discovery.

Pharmacol Ther

January 2025

Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:

G protein-coupled receptors (GPCRs) adopt conformational states that activate or inhibit distinct signaling pathways, including those mediated by G proteins or β-arrestins. Biased signaling through GPCRs may offer a promising strategy to enhance therapeutic efficacy while reducing adverse effects. Cannabinoid receptor 1 (CB1), a key GPCR in the endocannabinoid system, presents therapeutic potential for conditions such as pain, anxiety, cognitive impairment, psychiatric disorders, and metabolic diseases.

View Article and Find Full Text PDF

Yeast-based sensors have shown great applicability for deorphanization of G protein-coupled receptors (GPCRs) and screening of ligands targeting these. A GPCR of great interest is free fatty acid 2 receptor (FFA2R), for which short-chain fatty acids such as propionate and acetate are agonists. FFA2R regulates a wide array of downstream receptor signaling pathways in both adipose tissue and immune cells and has been recognized as a promising therapeutic target, having been implicated in several metabolic and inflammatory diseases.

View Article and Find Full Text PDF

Neuropeptides are inter-cellular signaling molecules occurring throughout animals. Most neuropeptides bind and activate G-protein coupled receptors, but some also activate ionotropic receptors (or "ligand-gated ion channels"). This is exemplified by the tetra-peptide H-Phe-Met-Arg-Phe-NH (FMRFa), which activates mollusc and annelid FMRFa-gated sodium channels (FaNaCs) from the trimeric degenerin/epithelial sodium channel superfamily.

View Article and Find Full Text PDF

The supervision of novel psychoactive substances (NPSs) is a global problem, and the regulation of NPSs was heavily relied on identifying structural matches in established NPSs databases. However, violators could circumvent legal oversight by altering the side chain structure of recognized NPSs and the existing methods cannot overcome the inaccuracy and lag of supervision. In this study, we propose a scaffold and transformer-based NPS generation and Screening (STNGS) framework to systematically identify and evaluate potential NPSs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!