A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning methods for predicting guide RNA effects in CRISPR epigenome editing experiments. | LitMetric

CRISPR epigenomic editing technologies enable functional interrogation of non-coding elements. However, current computational methods for guide RNA (gRNA) design do not effectively predict the power potential, molecular and cellular impact to optimize for efficient gRNAs, which are crucial for successful applications of these technologies. We present "launch-dCas9" (machine LeArning based UNified CompreHensive framework for CRISPR-dCas9) to predict gRNA impact from multiple perspectives, including cell fitness, wildtype abundance (gauging power potential), and gene expression in single cells. Our launchdCas9, built and evaluated using experiments involving >1 million gRNAs targeted across the human genome, demonstrates relatively high prediction accuracy (AUC up to 0.81) and generalizes across cell lines. Method-prioritized top gRNA(s) are 4.6-fold more likely to exert effects, compared to other gRNAs in the same cis-regulatory region. Furthermore, launchdCas9 identifies the most critical sequence-related features and functional annotations from >40 features considered. Our results establish launch-dCas9 as a promising approach to design gRNAs for CRISPR epigenomic experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042384PMC
http://dx.doi.org/10.1101/2024.04.18.590188DOI Listing

Publication Analysis

Top Keywords

machine learning
8
guide rna
8
crispr epigenomic
8
power potential
8
grnas
5
learning methods
4
methods predicting
4
predicting guide
4
rna effects
4
effects crispr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!