Alternative mRNA splicing can generate distinct protein isoforms to allow for the differential control of cell processes across cell types. However, alternative splice isoforms that differentially modulate distinct cell division programs have remained elusive. Here, we demonstrate that mammalian germ cells express an alternate mRNA splice isoform for the kinetochore component, DSN1, a subunit of the MIS12 complex that links the centromeres to spindle microtubules during chromosome segregation. This germline DSN1 isoform bypasses the requirement for Aurora kinase phosphorylation for its centromere localization due to the absence of a key regulatory region allowing DSN1 to display persistent centromere localization. Expression of the germline DSN1 isoform in somatic cells results in constitutive kinetochore localization, chromosome segregation errors, and growth defects, providing an explanation for its tight cell type-specific expression. Reciprocally, precisely eliminating expression of the germline DSN1 splice isoform in mouse models disrupts oocyte maturation and early embryonic divisions coupled with a reduction in fertility. Together, this work identifies a germline-specific splice isoform for a chromosome segregation component and implicates its role in mammalian fertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042369 | PMC |
http://dx.doi.org/10.1101/2024.04.17.589883 | DOI Listing |
J Transl Med
January 2025
Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
Background: Death-Associated Protein Kinase 1 (DAPK1) family members are calcium/calmodulin-regulated serine/threonine kinases implicated in cell death, normal development, and human diseases. However, the regulation of DAPK1 expression in cancer remains unclear.
Methods: We examined the expression and functional impact of a DAPK1 splice variant, DAPK1-215, in multiple cancer cell lines.
Comp Biochem Physiol Part D Genomics Proteomics
January 2025
College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:
Glutathione S-transferase (GST) plays a critical role in detoxifying various chemical compounds and is essential for host adaptation and pesticide resistance in insects. To understand the genetic structure of the GST family and the expression patterns among three haplotypes of Aphis gossypii, we conducted studies using genome annotation files and RNA-seq data. We identified 11 GSTs in A.
View Article and Find Full Text PDFiScience
January 2025
Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain.
Alternative splicing is a post-transcriptional process resulting in multiple protein isoforms from a single gene. Abnormal splicing may lead to metabolic diseases, including type 2 diabetes mellitus (T2DM). To identify the splicing factor expression that predicts T2DM remission in coronary heart disease (CHD) patients, we identified newly diagnosed T2DM at baseline ( = 190) from the CORDIOPREV study.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:
ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.
View Article and Find Full Text PDFmedRxiv
February 2024
Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (). This variant (rs3115534-G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!