A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classifying cell cycle states and a quiescent-like G0 state using single-cell transcriptomics. | LitMetric

AI Article Synopsis

  • Single-cell transcriptomics reveals diverse cellular behavior, with a focus on the importance of cell cycle stages in human neural stem cells.
  • The ccAFv2 classifier categorizes cells into six distinct cell cycle states and a quiescent-like state, outperforming existing methods while offering flexibility and customizable classifications.
  • Demonstrated effectiveness across different cell types and species, ccAFv2 is accessible as an R package and a Python package, making it a valuable resource for analyzing complex biological data and understanding cellular dynamics.

Article Abstract

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-like G0 state (qG0), and it incorporates a tunable parameter to filter out less certain classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-art methods even while classifying more cell cycle states, including G0. We demonstrate that the ccAFv2 classifier is generalizable across cell types and all three germ layers by applying it to developing fetal cells. We showcased the versatility of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various normalization methods and gene identifiers. We provide methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover underlying biological signals. The classifier can be used either as an R package integrated with Seurat or a PyPI package integrated with scanpy. We proved that ccAFv2 has enhanced accuracy, flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular heterogeneity, and deciphering the molecular mechanisms by which proliferation and quiescence affect cellular processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042294PMC
http://dx.doi.org/10.1101/2024.04.16.589816DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
cycle states
12
classifying cell
8
quiescent-like state
8
single-cell transcriptomics
8
cellular heterogeneity
8
cell
8
single cell
8
ccafv2 classifier
8
package integrated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!