Background: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway.
Methods: Capitalizing on past work demonstrating LRRK2 and phosphorylated-Rab10 interact on vesicles that can shed into biofluids, we developed and validated a high-throughput single-molecule array assay to measure extracellular pT73-Rab10. Ratios of pT73-Rab10 to total Rab10 measured in biobanked serum samples were compared between informative groups of transgenic mice, rats, and a deeply phenotyped cohort of iPD cases and controls. Multivariable and weighted correlation network analyses were used to identify genetic, transcriptomic, clinical, and demographic variables that predict the extracellular pT73-Rab10 to total Rab10 ratio.
Results: pT73-Rab10 is absent in serum from knockout mice but elevated by and mutations, as well as expression. Bone-marrow transplantation experiments in mice show that serum pT73-Rab10 levels derive primarily from circulating immune cells. The extracellular ratio of pT73-Rab10 to total Rab10 is dynamic, increasing with inflammation and rapidly decreasing with LRRK2 kinase inhibition. The ratio of pT73-Rab10 to total Rab10 is elevated in iPD patients with greater motor dysfunction, irrespective of disease duration, age, sex, or the usage of PD-related or anti-inflammatory medications. pT73-Rab10 to total Rab10 ratios are associated with neutrophil activation, antigenic responses, and the suppression of platelet activation.
Conclusions: The extracellular ratio of pT73-Rab10 to total Rab10 in serum is a novel pharmacodynamic biomarker for LRRK2-linked innate immune activation associated with disease severity in iPD. We propose that those iPD patients with higher serum pT73-Rab10 levels may benefit from LRRK2-targeting therapeutics to mitigate associated deleterious immunological responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042295 | PMC |
http://dx.doi.org/10.1101/2024.04.15.589570 | DOI Listing |
Mol Neurodegener
June 2024
Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA.
Background: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway.
View Article and Find Full Text PDFBackground: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway.
View Article and Find Full Text PDFNPJ Parkinsons Dis
February 2023
Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France.
Expression or phosphorylation levels of leucine-rich repeat kinase 2 (LRRK2) and its Rab substrates have strong potential as disease or pharmacodynamic biomarkers. The main objective of this study is therefore to assess the LRRK2-Rab pathway for use as biomarkers in human, non-human primate (NHP) and rat urine. With urine collected from human subjects and animals, we applied an ultracentrifugation based fractionation protocol to isolate small urinary extracellular vesicles (uEVs).
View Article and Find Full Text PDFMov Disord
July 2022
Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina, USA.
Background: Pathogenic leucine-rich repeat kinase 2 LRRK2 mutations may increase LRRK2 kinase activity and Rab substrate phosphorylation. Genetic association studies link variation in LRRK2 to idiopathic Parkinson disease (iPD) risk.
Objectives: Through measurements of the LRRK2 kinase substrate pT73-Rab10 in urinary extracellular vesicles, this study seeks to understand how LRRK2 kinase activity might change with iPD progression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!