AI Article Synopsis

  • Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and current treatments primarily involve dopamine replacement, which do not prevent disease progression.
  • Researchers investigated the glucocorticoid receptor (GR) modulator PT150 for its neuroprotective effects against neuroinflammation in a mouse model of PD, hypothesizing that it would protect dopamine neurons and reduce toxic protein accumulation.
  • The study found that PT150 treatment decreased dopamine neuron loss and microgliosis in the area of the brain affected by PD, demonstrating its potential as a neuroprotective strategy in this context.

Article Abstract

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days, immediately followed by oral treatment with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042181PMC
http://dx.doi.org/10.1101/2024.04.12.589261DOI Listing

Publication Analysis

Top Keywords

rotenone mouse
12
mouse model
12
glucocorticoid receptor
8
modulator pt150
8
pt150 rotenone
8
parkinson's disease
8
dan loss
8
reduced loss
8
loss dan
8
pt150 treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!