The gene, encoding Recombinase A (RecA) is one of three (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb within . Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042385PMC
http://dx.doi.org/10.1101/2024.04.15.589443DOI Listing

Publication Analysis

Top Keywords

intein splicing
12
mtb
9
reca intein
8
native host
8
splicing mtb
8
reca splicing
8
ectopic expression
8
expression mtb
8
splicing
6
reca
6

Similar Publications

Synthetic genetic circuits program the cellular input-output relationships to execute customized functions. However, efforts to scale up these circuits have been hampered by the limited number of reliable regulatory mechanisms with high programmability, performance, predictability and orthogonality. Here we report a class of split-intron-enabled trans-splicing riboregulators (SENTRs) based on de novo designed external guide sequences.

View Article and Find Full Text PDF

Effect of insertion of intein to Cryptococcus amylolentus, a nonpathogenic fungus closely related to causative agents of cryptococcosis.

Microb Pathog

December 2024

Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA; The BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA; Biological Chemistry Program, Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ, 85721, USA; Department of Molecular & Cellular Biology, College of Science, The University of Arizona, Tucson, AZ, 85721, USA. Electronic address:

Inteins are mobile elements within a host protein, with flanking exteins. Autocleavage of intein results in the fusion of exteins, leading to activation of protein. The presence of intein is species dependent.

View Article and Find Full Text PDF

Elucidation of protein-protein interactions (PPIs) represents one of the most important methods in biomedical research. Recently, PPIs have started to be exploited for drug discovery purposes and have thus attracted much attention from both the academic and pharmaceutical sectors. We previously developed a sensitive method, Split Intein-Mediated Protein Ligation (SIMPL), for detecting binary PPIs via irreversible splicing of the interacting proteins being investigated.

View Article and Find Full Text PDF
Article Synopsis
  • - Familial dysautonomia (FD) is a serious inherited disorder caused by a specific genetic mutation that leads to neurological and systemic issues, resulting in shorter life expectancy for those affected.
  • - Researchers developed a CRISPR base editor that can precisely correct the T-to-C mutation causing FD, achieving up to 70% successful editing in cell tests and improving the inclusion of a specific gene exon by over 50%.
  • - The study also included an effective delivery method using engineered adeno-associated virus vectors, demonstrating that this approach can correct genetic defects in neurons and shows promise for a potential permanent treatment for FD with minimal side effects.
View Article and Find Full Text PDF
Article Synopsis
  • Adeno-associated virus (AAV)-based gene therapy aims to treat hereditary disorders by replacing faulty genes, but the challenge is that many of these genes are larger than AAV's 5 kilobase capacity.
  • Researchers are exploring strategies like truncated gene versions and intein-based protein trans splicing to restore full gene functionality, focusing on the effectiveness of different inteins from the DnaE group.
  • The NpuDnaE variant has shown promising results, achieving 80% GFP assembly in HEK293 cells, indicating potential for higher efficiency in gene therapy applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!