Heterostructures in nanoparticles challenge our common understanding of interfaces due to quantum confinement and size effects, giving rise to synergistic properties. An alternating heterostructure in which multiple and reoccurring interfaces appear in a single nanocrystal is hypothesized to accentuate such properties. We present a colloidal synthesis for perovskite layered heterostructure nanoparticles with a (PbBr)(AMTP)PbBr composition. By varying the synthetic parameters, such as synthesis temperature, solvent, and selection of precursors, we control particle size, shape, and product priority. The structures are validated by X-ray and electron diffraction techniques. The heterostructure nanoparticles' main optical feature is a broad emission peak, showing the same range of wavelengths compared to the bulk sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036359PMC
http://dx.doi.org/10.1021/acs.cgd.3c01472DOI Listing

Publication Analysis

Top Keywords

colloidal synthesis
8
synthesis pbbramtppbbr
4
pbbramtppbbr periodic
4
periodic perovskite
4
perovskite "heterostructured"
4
"heterostructured" nanocrystal
4
nanocrystal heterostructures
4
heterostructures nanoparticles
4
nanoparticles challenge
4
challenge common
4

Similar Publications

NIPAm Microgels Synthesised in Water: Tailored Control of Particles' Size and Thermoresponsive Properties.

Polymers (Basel)

December 2024

School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.

Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of -isopropylacrylamide-based microgels covalently crosslinked with varying contents of ,-methylenebisacrylamide.

View Article and Find Full Text PDF

Background: This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimising absorption, increasing substrate utilisation, and reducing gastrointestinal distress as well as carious lesions.

Methods: In a randomised, double-blinded, crossover trial, 10 trained male cyclists/triathletes completed three experimental days separated by ~6 days.

View Article and Find Full Text PDF

An Advanced Combinatorial System from Leaves and Propolis Enhances Antioxidants' Skin Delivery and Fibroblasts Functionality.

Pharmaceuticals (Basel)

November 2024

Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece.

: Vine leaves are a bulky by-product that are disposed of and treated as waste in the wine production process. In the present study polyphenols from vine leaves were extracted and simultaneously encapsulated in a new delivery system consisting of liposomes and cyclodextrins. This system was further combined with propolis polyphenols encapsulated in cyclodextrins, resulting in a colloidal suspension for the release of antioxidants in a time-controlled way, the rate of which depends on the ratio of the materials.

View Article and Find Full Text PDF

As a small-molecule gelator used as a stabilizer in gel emulsions, it has numerous advantages, such as low dosage, independence from phase ratios, and ease of control. In this study, a cholesterol derivative (CSA) was designed and synthesized to be used as a stabilizer for gel emulsions. Gelation experiments demonstrated that this small molecule could gelate various organic solvents, including linear alkanes, toluene, isoamyl alcohol, and acetone.

View Article and Find Full Text PDF

The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (D), which varied from 87.7 nm to 1618.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!