Type 2 diabetes presents a significant global health burden and is frequently linked to serious clinical complications, including diabetic cardiomyopathy, nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from , exhibits various biochemical and physiological effects. In recent years, a growing number of researchers have investigated the role of APS in glucose control and the treatment of diabetes and its complications in various diabetes models, positioning APS as a promising candidate for diabetes therapy. This review surveys the literature on APS from several databases over the past 20 years, detailing its mechanisms of action in preventing and treating diabetes mellitus. The findings indicate that APS can address diabetes by enhancing insulin resistance, modulating the immune system, protecting islet cells, and improving the intestinal microbiota. APS demonstrates positive pharmacological value and clinical potential in managing diabetic complications, including diabetic retinopathy, nephropathy, cardiomyopathy, cognitive dysfunction, wound healing, and more. However, further research is necessary to explore APS's bioavailability, optimal dosage, and additional clinical evidence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11039829 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1339406 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:
Acute pancreatitis (AP) is a severe digestive disorder, worsened by a high-fat diet (HFD) through inflammation and gut microbiota disruption. Astragalus polysaccharides (APS), known for their anti-inflammatory properties, may alleviate HFD-induced exacerbation of AP by modulating gut microbiota. This study investigates the effect of APS on AP severity under a HFD (HAP).
View Article and Find Full Text PDFTissue Cell
January 2025
Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China. Electronic address:
Astragalus polysaccharide (APS) is a bioactive component of Astragalus species that shows protective effects on C2C12 muscle cell proliferation and differentiation under hypoxic conditions. In this study, EdU staining, cell scratch testing, quantitative reverse-transcription polymerase chain reaction, Western blotting, immunofluorescence analysis, and lnc-GD2H silencing were used to investigated the protective effects and mechanisms of action of APS against CoCl-induced hypoxic injury of muscle cells. Our results showed that APS promoted cell proliferation and increased the expression of lnc-GD2H, c-Myc, and Ki-67.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University Chongqing 400042, China.
Objective: To investigate the effects of Astragalus polysaccharide (APS) on skeletal muscle structure and function in D-galactose (D-gal)-induced C57BL/6J mice.
Methods: Eighteen male C57BL/6J mice of specific pathogen-free (SPF) grade, aged 8 weeks, were selected and divided into three groups: a control group (0.9% saline gavage for 16 weeks), a D-gal group (subcutaneous injection of 200 mg/kg D-galactose in the upper neck region, once daily for 8 weeks), and a D-gal + APS group (subcutaneous injection of 200 mg/kg D-galactose, once daily for 8 weeks, with concurrent administration of 100 mg/kg APS by gavage for 8 weeks).
This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China. Electronic address:
Due to the lack of specific antibody anti-chicken tumor necrosis factor receptor-associated factor 2 (TRAF2), it is difficult to further explore the role of TRAF2 in pulmonary artery remodeling in pulmonary hypertension(PH) in broilers. In this experiment, we prepared a polyclonal antibody to TRAF2 by constructing a TRAF2 recombinant protein prokaryotic expression vector and analyzed the expression of TRAF2 in in vivo and in vitro models of pulmonary hypertension in broiler chickens and the effect of TRAF2 on the activity and apoptosis of PASMCs. The results showed that after immunization with TRAF2 recombinant protein we obtained high titers of polyclonal antibodies, and astragalus polysaccharide as an immune adjuvant could enhance the effect of immunization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!