Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Sivelestat is a potent and specific neutrophil elastase inhibitor. It is clinically used in treating lung injury and respiratory distress syndrome. This engaged us to undertake the present study in which sivelestat was studied as an anti-inflammatory and anti-viral agent. Methodology The docking study of sivelestat on matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), chikungunya virus nonstructural protein-2 (CVnsP2) protease, and influenza A (H1N9) virus neuraminidase was assessed using the Chemistry at Harvard Macromolecular Mechanics (CHARMM) Dock (CDOCK) method. Furthermore, molecular physicochemical; bioactivity; absorption, distribution, metabolism, and excretion (ADME); toxicity; and Search Tool for Interacting Chemicals (STITCH) analyses were performed by using the Molinspiration (Molinspiration Cheminformatics, Slovensky Grob, Slovak Republic), SwissADME SwissADME (Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Switzerland), pkCSM (University of Melbourne, Melbourne, Australia), and STITCH-free online tools. Results The molecular physicochemical assessment of the ligand (sivelestat) showed no (zero) violation and agreed with the thumb rule of five, otherwise known as Lipinski's rule of five. ADME prediction of the ligand (sivelestat) is shown to possess a low gastrointestinal absorption (GIA) property. Similarly, toxicity analysis of the ligand (sivelestat) is predicted to have a hepatotoxicity effect. STITCH analysis reveals that the ligand (sivelestat) has exhibited interactions with the three human proteins. Conclusions The present molecular docking studies showed that the ligand (sivelestat) has successfully docked with all four enzymes of interest. Hence, the current finding has provided a good understanding of sivelestat as an effective suppressor activity against all four enzymes: MMP-2, MMP-9, CVnsP2 protease, and influenza neuraminidase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040421 | PMC |
http://dx.doi.org/10.7759/cureus.56846 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!