Nucleotide binding and oligomeric domain-like receptor X1 (NLRX1), a member of the NLR family, is associated with the physiological and pathological processes of inflammation, autophagy, immunity, metabolism and mitochondrial regulation, and has been demonstrated to have pro- or antitumor effects in various tumor types. However, the biological function of NLRX1 in esophageal squamous cell carcinoma (ESCC) has remained elusive. In the present study, by using bioinformatics methods, the differential expression of NLRX1 at the mRNA level was examined. Overall survival, clinical correlation, receiver operating characteristic curve, Cox regression, co-expression, enrichment, immune infiltration and drug sensitivity analyses were carried out. A nomogram and a calibration curve were constructed. Changes in protein expression levels were investigated by immunohistochemistry and western blotting. The impact of NLRX1 on i) cell proliferation was evaluated by Cell Counting Kit-8 assays; ii) migration was examined by wound-healing assays; iii) migration and invasion were evaluated by Transwell assays; and iv) apoptosis was assessed by Annexin V/PI staining and flow cytometry. The results revealed that, compared to normal adjacent tissue, NLRX1 was lowly expressed in ESCC, and patients with low NLRX1 expression had a shorter survival time. NLRX1 was an independent prognostic factor for ESCC and was associated with tumor grading. Patients in the low-NLRX1 group showed a decrease in the infiltration of activated natural killer cells, monocytes and M0 macrophages, and these immune-cell infiltration levels were positively correlated with NLRX1 expression. Knocking down NLRX1 promoted the proliferation of KYSE450 cells, while overexpression of NLRX1 inhibited the proliferation of ECA109 cells. NLRX1 negatively regulated the PI3K/AKT signaling pathway in ESCC. These findings indicate that, through several mechanisms, NLRX1 suppresses tumor growth in ESCC, which offers new insight for investigating the causes and progression of ESCC, as well as for identifying more efficient therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040542 | PMC |
http://dx.doi.org/10.3892/ol.2024.14397 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou 515063, China. Electronic address:
The extensive use of antibiotics and their persistence in the environment have seriously threatened marine ecosystems in recent years. The frequent occurrence of extreme weather due to climate change has also increased the uncertainty of effective toxicity identification and risk assessment of the chemicals of concern. This study aimed to investigate the toxic effects and potential mechanisms of florfenicol (0.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2024
Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
Ischemic strokes pose serious risks to human health. We aimed to elucidate the function of NOD-like receptor X1 (NLRX1) in a rat middle cerebral artery occlusion (MCAO)-induced cerebral ischemia/reperfusion injury (CIRI) model and in an oxygen-glucose deprivation/reperfusion (OGD/R)-treated human microglial cell line (HMC3) model. Following NLRX1 upregulation, infarct volumes were measured with 2,3,5-triphenyltetrazolium chloride staining and pathological examination was conducted with hematoxylin-eosin staining.
View Article and Find Full Text PDFExp Cell Res
November 2024
Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Electronic address:
Mitophagy significantly influences renal ischemia/reperfusion (I/R) injury and recovery. NLRX1 is recognized for its regulatory role in governing mitochondrial damage, autophagy, and the expression of pro-inflammatory factors. Despite the acknowledged involvement of NLRX1 in these crucial cellular processes, its specific function in renal I/R injury remains unclear.
View Article and Find Full Text PDFArch Virol
November 2024
Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China.
NLR family member X1 (NLRX1) is an important member of the NOD-like receptor (NLR) family and plays unique roles in immune system regulation. Patients with hepatitis B virus (HBV) infection are more likely to have the NLRX1 mutation p.Arg707Cys than healthy individuals.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
October 2024
Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA.
Background: Water scarcity is a current, significant global concern that will only increase under the pressure of climate change. Improving water efficiency of poultry is a new and promising area to help temper agriculture's future impact on fresh water availability. Here, we explored the effects of acute heat stress (HS) on circulating stress and inflammatory markers in 2 lines of broilers divergently selected for water efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!