GM2 gangliosidoses (GM2) are a group of rare lysosomal storage disorders in which accumulation of GM2 gangliosides results in progressive central nervous system damage. The infantile GM2 phenotype is characterized by delays in milestones by 6 months of age, followed by rapid loss of motor, cognitive, and visual function. Advancements in early diagnosis and pharmacotherapies provide promise for improved outcomes. However, the lack of feasible and clinically meaningful clinical outcome assessments for GM2 poses a challenge to characterizing GM2 natural history and selecting clinical trial endpoints. The purpose of this study was to develop a remotely administered infantile GM2 rating scale to measure health-related function in children with infantile GM2. A 2-phase mixed methods design was employed. In phase 1 of the study, 8 families of children with Infantile GM2 completed a natural history survey and a 1:1 semistructured interview to provide caregiver perspectives on the impacts of GM2 on health-related function. In phase 2 of the study, 8 expert clinicians provided feedback via surveys and participated in videoconference-hosted focus groups to refine scale administration and scoring procedures. These methods guided the development of 16 scale items to assess function in 5 health-related function domains: vision, hand and arm use, communication, gross motor, and feeding. This study used caregiver perspectives and expert clinician feedback to develop a remotely administered clinical outcome assessment of clinically meaningful health-related function in children with infantile GM2. Future studies will further evaluate the feasibility, reliability, and validity of the Infantile GM2 Clinical Rating Scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168865PMC
http://dx.doi.org/10.1177/08830738241246703DOI Listing

Publication Analysis

Top Keywords

infantile gm2
28
health-related function
20
gm2
13
rating scale
12
clinically meaningful
12
children infantile
12
gm2 clinical
8
clinical rating
8
assessment clinically
8
meaningful health-related
8

Similar Publications

Tay-Sachs Disease is a rare lysosomal storage disorder caused by mutations in the HEXA gene, responsible for the degradation of ganglioside GM2. In addition to progressive neurodegeneration, Tay-Sachs patients display bone anomalies, including kyphosis. Tay-Sachs disease mouse model (Hexa-/-Neu3-/-) shows both neuropathological and clinical abnormalities of the infantile-onset disease phenotype.

View Article and Find Full Text PDF

GM2 gangliosidoses (GM2) are a group of rare lysosomal storage disorders in which accumulation of GM2 gangliosides results in progressive central nervous system damage. The infantile GM2 phenotype is characterized by delays in milestones by 6 months of age, followed by rapid loss of motor, cognitive, and visual function. Advancements in early diagnosis and pharmacotherapies provide promise for improved outcomes.

View Article and Find Full Text PDF

Abstract: Gangliosidosis is one of the hereditary metabolic diseases caused by the accumulation of Gangliosid in the central nervous system, leading to severe and progressive neurological deficits. Regarding phenotype, GM1 and GM2-Gangliosidosis are divided into Infantile, Juvenile, and Adult.

Materials & Methods: In this study, thirty-seven patients with GM1 and GM2-Gangliosidosis were referred to the neurology department of Mofid Children's Hospital in Tehran, Iran, whose disease was confirmed from September 2019 to December 2021.

View Article and Find Full Text PDF

Introduction: Pompe disease (PD) is a glycogen disorder caused by the deficient activity of acid alpha-glucosidase (GAA). We sought to review the latest available evidence on the safety and efficacy of recombinant human GAA enzyme replacement therapy (ERT) for infantile-onset PD (IOPD).

Methods: We systematically searched the MEDLINE (via PubMed) and Embase databases for prospective clinical studies evaluating ERT for IOPD on pre-specified outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!