Inert inorganic nano-building blocks, such as carbon nanotubes (CNTs) and boron nitride (BN) nanosheets, possess excellent physicochemical properties. However, it remains challenging to build aerogels with these inert nanomaterials unless they are chemically modified or compounded with petrochemical polymers, which affects their intrinsic properties and is usually not environmentally friendly. Here, a universal biomacromolecule-enabled assembly strategy is proposed to construct aerogels with 90 wt% ultrahigh inorganic loading. The super-high inorganic content is beneficial for exploiting the inherent properties of inert nanomaterials in multifunctional applications. Taking chitosan-CNTs aerogel as a proof-of-concept demonstration, it delivers sensitive pressure response as a pressure sensor, an ultrahigh sunlight absorption (94.5%) raising temperature under light (from 25 to 71 °C within 1 min) for clean-up of crude oil spills, and superior electromagnetic interference shielding performance of up to 68.9 dB. This strategy paves the way for the multifunctional application of inert nanomaterials by constructing aerogels with ultrahigh inorganic loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202402334 | DOI Listing |
Nat Commun
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, PL 30-348, Krakow, Poland.
Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria.
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause specimen fracture during APT, while impurities may introduce additional peaks in the mass spectra.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.
View Article and Find Full Text PDFTalanta
December 2024
College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China. Electronic address:
The rapid advancement of the Internet of Things has created a substantial demand for portable gas sensors. Nevertheless, the development of gas sensors that can fulfill the demanding criteria of high sensitivity and rapid response time continues to pose a considerable challenge. Herein, an in-situ anchoring strategy is proposed to construct CNTs@MOF heterostructure to establish strong electronic coupling and charge relocation for enhancing the monitoring capabilities of isopropanol (freshness markers for fruits) at room temperature.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!