One of the most prominent social influences on human decision making is conformity, which is even more prominent when the perceptual information is ambiguous. The Bayes optimal solution to this problem entails weighting the relative reliability of cognitive information and perceptual signals in constructing the percept from self-sourced/endogenous and social sources, respectively. The current study investigated whether humans integrate the statistics (i.e., mean and variance) of endogenous perceptual and social information in a Bayes optimal way while estimating numerosities. Our results demonstrated adjustment of initial estimations toward group means only when group estimations were more reliable (or "certain"), compared to participants' endogenous metric uncertainty. Our results support Bayes optimal social conformity while also pointing to an implicit form of metacognition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cogs.13447DOI Listing

Publication Analysis

Top Keywords

bayes optimal
16
social
5
bayes
4
optimal integration
4
integration social
4
social endogenous
4
endogenous uncertainty
4
uncertainty numerosity
4
numerosity estimation
4
estimation prominent
4

Similar Publications

To enhance patient outcomes in pediatric cancer, a better understanding of the medical and biological risk variables is required. With the growing amount of data accessible to research in pediatric cancer, machine learning (ML) is a form of algorithmic inference from sophisticated statistical techniques. In addition to highlighting developments and prospects in the field, the objective of this systematic study was to methodically describe the state of ML in pediatric oncology.

View Article and Find Full Text PDF

A constrained optimisation framework for parameter identification of the SIRD model.

Math Biosci

January 2025

Maxwell Institute for Mathematical Sciences, The University of Edinburgh and Heriot-Watt University, Bayes Centre, Edinburgh, Scotland, UK; School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, Edinburgh, Scotland, UK. Electronic address:

We consider a numerical framework tailored to identifying optimal parameters in the context of modelling disease propagation. Our focus is on understanding the behaviour of optimisation algorithms for such problems, where the dynamics are described by a system of ordinary differential equations associated with the epidemiological SIRD model. Applying an optimise-then-discretise approach, we examine properties of the solution operator and determine existence of optimal parameters for the problem considered.

View Article and Find Full Text PDF

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields.

View Article and Find Full Text PDF

Bayesian network for predicting mandibular third molar extraction difficulty.

BMC Oral Health

January 2025

Sub-Institute of Public Safety Standardization, China National Institute of Standardization, No.4 Zhichun Road, Haidian District, Beijing, 100191, PR China.

Background: This study aimed to establish a model for predicting the difficulty of mandibular third molar extraction based on a Bayesian network to meet following requirements: (1) analyse the interaction of the primary risk factors; (2) output quantitative difficulty-evaluation results based on the patient's personal situation; and (3) identify key surgical points and propose surgical protocols to decrease complications.

Methods: Relevant articles were searched to identify risk factors. Clinical knowledge and experience were used to analyse the risk factors to establish the Bayesian network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!