Exploding population, industrialization, and an increase in water pollution has led to acute shrinkage in freshwater availability. Numerous countries have started exploring municipal wastewater as a new potential source of water to bring a paradigm shift from linearity to obtaining circularity in human water cycle management. This study aims to develop a decision support system for integrated water and wastewater management (DSS_IWWM), targeted towards reuse-focused selection of appropriate wastewater treatment technology, and localized planning around STPs in terms of reclaimed water demand identification, estimation, allocation, and sustainable pricing. The developed DSS_IWWM comprises of a repository of fourteen reuse purposes, reuse quality criteria, and 25 wastewater treatment technologies (WWTTs) in 360 combinations. It is sensitive to local resource scenarios and applies a socioeconomic and technology-focused methodology for addressing the interests of the community and investing agencies and viably. To validate the application of the DSS_IWWM, it is first tested with data from three cities in the state of Uttar Pradesh (India)-Lucknow, Prayagraj, and Agra-and then extended to nine more Indian cities with varying influent quality characteristics, resource inputs, existing STP technologies, and same target quality and decision criteria prioritization, to present a comparison of appropriate WWTTs and associated average prices obtained in different scenarios. It is concluded that influent quality, existing technology, and target quality criteria play significant role in selection of appropriate WWTTs. The traditional technologies such as UASB and ASP are required to be augmented and supplemented with high-performing WWTTs, such as BIOFOR-F with (C + F + RSF) and SBT + WP to obtain desired effluent quality. High-performing advanced oxidation process (AOP)-based systems such as A2O, SBR, and BIOFOR-F require WWTTs with relatively lower average costs (such as SBT and OP). The developed DSS_IWWM may prove to be very useful and beneficial for policymakers, government officials, engineers, and scientific community as it will facilitate rational decision-making for efficient investment planning in reuse focused wastewater treatment towards achieving circular economy in sustainable water resource management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33395-7 | DOI Listing |
J Environ Manage
January 2025
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland.
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resource, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are extensively documented within antibiotic pharmaceutical factories. Notably, non-antibiotic pharmaceuticals also represent a significant portion of the pharmaceuticals market. However, the comparative analyses of soil-borne ARG profiles and associated risks in different categories of pharmaceutical factories remain limited.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH-N removal sludge reactors mediated by various MnOx types, including δ-MnO (δ-MSR), β-MnO (β-MSR), α-MnO (α-MSR), and natural Mn ore (MOSR), investigating their NH-N removal performances and mechanisms under different initial N loading and pH conditions.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:
Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined.
View Article and Find Full Text PDFWater Res
January 2025
School of Science, RMlT University, Melbourne, VC 3000. Australia.
Electrochemical recovery of zero-valent sulfur (S) from thiourea (TU) wastewater offers a promising waste-to-value strategy that expects to promote the sulfur resource cycle in water treatment but still suffer from electrode poisoning and sulfur over-oxidation. Herein, we designed a metal-free CNT electrochemical membrane for selective oxidation of thiourea and recovery of S. We found that defect sites on the carbon nanotube surface enable direct electron transfer for thiourea oxidation and may form carbon-sulfur bridge bonds, thereby facilitating the generation of S and urea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!