Electrophysiology of fluoride channels in the yeasts Saccharomyces cerevisiae and Candida albicans.

Methods Enzymol

Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States.

Published: April 2024

Tight regulation of molecules moving through the cell membrane is particularly important for free-living microorganisms because of their small cell volumes and frequent changes in the chemical composition of the extracellular environment. This is true for nutrients, but even more so for toxic molecules. Traditionally, the transport of these diverse molecules in microorganisms has been studied on cell populations rather than on single cells, mainly because of technical difficulties. The goal of this chapter is to make available a detailed method to prepare yeast spheroplasts to study the movement of fluoride ions across the plasma membrane of single cells by the patch-clamp technique. In this procedure, three steps are critical to achieve high resistance (GΩ) seals between the membrane and the glass electrode: (1) appropriate removal of the cell wall by enzymatic treatment; (2) balance between the osmotic strength of sealing solutions and cell membrane turgor; and (3) meticulous morphological inspection of spheroplasts suitable for gigaseal formation. We show now that this method, originally developed for Saccharomyces cerevisiae, can also be applied to Candida albicans, an opportunistic human pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2024.01.005DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
candida albicans
8
cell membrane
8
single cells
8
cell
5
electrophysiology fluoride
4
fluoride channels
4
channels yeasts
4
yeasts saccharomyces
4
cerevisiae candida
4

Similar Publications

Bioethanol production is one of the key alternatives for fossil fuel use due to climate change. The study seeks to upscale tailor-made onsite enzyme blends for the bioconversion of cassava peels to bioethanol in simultaneous saccharification and fermentation (SSF) process using cassava peels-degrading fungi. The starch and cellulose contents of peels were determined.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site.

View Article and Find Full Text PDF

Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress.

J Pineal Res

March 2025

College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling, China.

Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress.

View Article and Find Full Text PDF

Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.

View Article and Find Full Text PDF

Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!