Background: While immunotherapy has been highly successful for the treatment of some cancers, for others, the immune response to tumor antigens is weak leading to treatment failure. The resistance of tumors to checkpoint inhibitor therapy may be caused by T cell exhaustion resulting from checkpoint activation.

Methods: In this study, lentiviral vectors that expressed T cell epitopes of an experimentally introduced tumor antigen, ovalbumin, or the endogenous tumor antigen, Trp1 were developed. The vectors coexpressed CD40 ligand (CD40L), which served to mature the dendritic cells (DCs), and a soluble programmed cell death protein 1 (PD-1) microbody to prevent checkpoint activation. Vaccination of mice bearing B16.OVA melanomas with vector-transduced DCs induced the proliferation and activation of functional, antigen-specific, cytolytic CD8 T cells.

Results: Vaccination induced the expansion of CD8 T cells that infiltrated the tumors to suppress tumor growth. Vector-encoded CD40L and PD-1 microbody increased the extent of tumor growth suppression. Adoptive transfer demonstrated that the effect was mediated by CD8 T cells. Direct injection of the vector, without the need for ex vivo transduction of DCs, was also effective.

Conclusions: This study suggests that therapeutic vaccination that induces tumor antigen-specific CD8 T cells coupled with a vector-expressed checkpoint inhibitor can be an effective means to suppress the growth of tumors that are resistant to conventional immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043704PMC
http://dx.doi.org/10.1136/jitc-2023-008761DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
cd8 cells
12
checkpoint inhibitor
8
tumor antigen
8
pd-1 microbody
8
tumor
7
checkpoint
5
checkpoint inhibitor-expressing
4
inhibitor-expressing lentiviral
4
lentiviral vaccine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!