A strong influence of the lattice degree of freedom on magnetoresistance (MR) under high pressure underlies the conception of 'structure-driven' magnetoresistance (SDMR). In most magnetic or topological materials, the suppression of MR with increasing pressure is a general trend, while for some magnetic composites the MR enhances and even shows unusual behavior as a consequence of structural transition. Here we investigated the SDMR in the composite material based on the ZnGeAssemiconductor matrix and MnAs magnetic inclusions in a phase ratio of 4:1. At ambient pressure, its magnetic and transport properties are governed by MnAs inclusions, i.e. it shows a Curie temperature≈ 320 K and metallic-like conductivity. Under high pressure, the low-field room temperature MR undergoes multiple changes in the pressure range up to 7.2 GPa. The structural transition in the ZnGeAsmatrix has been found at ∼6 GPa, slightly lower than in the pure ZnGeAs(6.2 GPa). The huge SDMR as high as 85% at 6.8 GPa and 2.5 kOe, which contains both positive and negative MR components, is accompanied by a pressure-induced metallic-like-to-semiconductor-like transition and the enhanced ferromagnetic order of MnAs inclusions. This observation offers a competing mechanism between the robust extrinsic ferromagnetism and high-pressure electronic properties of ZnGeAs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad42f5DOI Listing

Publication Analysis

Top Keywords

high pressure
8
structural transition
8
mnas inclusions
8
pressure
5
ratio zngeasand
4
mnas
4
zngeasand mnas
4
mnas phases
4
phases single
4
single composite
4

Similar Publications

Background: Stimulating diuresis is crucial in heart failure (HF) treatment. Diuretic resistance develops in approximately 30% to 45% of patients with HF.

Objective: We investigated the feasibility and safety of lateral epidural stimulation (LES) to enhance diuresis by stimulating renal afferent sensory nerves.

View Article and Find Full Text PDF

Epidemiological and Molecular Investigation of Feline Panleukopenia Virus Infection in China.

Viruses

December 2024

Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.

View Article and Find Full Text PDF

Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.

View Article and Find Full Text PDF

Flexible Piezoresistive Film Pressure Sensor Based on Double-Sided Microstructure Sensing Layer.

Sensors (Basel)

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

Flexible thin-film pressure sensors have garnered significant attention due to their applications in industrial inspection and human-computer interactions. However, due to their ultra-thin structure, these sensors often exhibit lower performance, including a narrow pressure response range and low sensitivity, which constrains their further application. The most commonly used microstructure fabrication methods are challenging to apply to ultra-thin functional layers and may compromise the structural stability of the sensors.

View Article and Find Full Text PDF

Tire pressure monitoring systems (TPMSs) are essential for maintaining driving safety by continuously monitoring critical tire parameters, such as pressure and temperature, in real time during vehicle operation. Among these parameters, tire pressure is the most significant, necessitating the use of highly precise, cost-effective, and energy-efficient sensing technologies. With the rapid advancements in micro-electro-mechanical system (MEMS) technology, modern automotive sensing and monitoring systems increasingly rely on MEMS sensors due to their compact size, low cost, and low power consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!