. We provide optimal particle split numbers for speeding up TOPAS Monte Carlo simulations of linear accelerator (linac) treatment heads while maintaining accuracy. In addition, we provide a new TOPAS physics module for simulating photoneutron production and transport.TOPAS simulation of a Siemens Oncor linac was used to determine the optimal number of splits for directional bremsstrahlung splitting as a function of the field size for 6 MV and 18 MV x-ray beams. The linac simulation was validated against published data of lateral dose profiles and percentage depth-dose curves (PDD) for the largest square field (40 cm side). In separate simulations, neutron particle split and the custom TOPAS physics module was used to generate and transport photoneutrons, called 'TsPhotoNeutron'. Verification of accuracy was performed by comparing simulations with published measurements of: (1) neutron yields as a function of beam energy for thick targets of Al, Cu, Ta, W, Pb and concrete; and (2) photoneutron energy spectrum at 40 cm laterally from the isocenter of the Oncor linac from an 18 MV beam with closed jaws and MLC.The optimal number of splits obtained for directional bremsstrahlung splitting enhanced the computational efficiency by two orders of magnitude. The efficiency decreased with increasing beam energy and field size. Calculated lateral profiles in the central region agreed within 1 mm/2% from measured data, PDD curves within 1 mm/1%. For the TOPAS physics module, at a split number of 146, the efficiency of computing photoneutron yields was enhanced by a factor of 27.6, whereas it improved the accuracy over existing Geant4 physics modules.This work provides simulation parameters and a new TOPAS physics module to improve the efficiency and accuracy of TOPAS simulations that involve photonuclear processes occurring in high-materials found in linac components, patient devices, and treatment rooms, as well as to explore new therapeutic modalities such as very-high energy electron therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC467037 | PMC |
http://dx.doi.org/10.1088/1361-6560/ad4303 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Shiraz university of technology, Shiraz, Iran.
A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.
View Article and Find Full Text PDFPhys Med
January 2025
IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy. Electronic address:
Purpose: Minibeam radiotherapy (MBRT) uses small parallel beams of radiation to create a highly modulated dose pattern. The aim of this study is to develop an optical radioluminescence imaging (RLI) approach to perform real-time dose measurement for MBRT.
Methods: MBRT was delivered using an image-guided small animal irradiator equipped with a custom collimator.
Phys Med Biol
January 2025
Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America.
. To study the effect of dose-rate in the time evolution of chemical yields produced in pure water versus a cellular-like environment for FLASH radiotherapy research.A version of TOPAS-nBio with Tau-Leaping algorithm was used to simulate the homogenous chemistry stage of water radiolysis using three chemical models: (1) liquid water model that considered scavenging of, Hby dissolved oxygen; (2) Michaels & Hunt model that considered scavenging ofOH,, and Hby biomolecules existing in cellular environment; (3) Wardman model that considered model 2) and the non-enzymatic antioxidant glutathione (GSH).
View Article and Find Full Text PDFFront Oncol
December 2024
Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany.
Phys Med Biol
December 2024
Trento Institute for Fundamental Physics and Application (TIFPA), via Sommarive 15, 38123 Trento, Italy.
. The present work shows the first extensive validation of the(GSM). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!