A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plastocapillarity: Partial and full Newtonian drop embedding into immiscible yield stress substrates. | LitMetric

Plastocapillarity: Partial and full Newtonian drop embedding into immiscible yield stress substrates.

J Colloid Interface Sci

Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA. Electronic address:

Published: August 2024

Hypothesis: Recent advances have been made in elastocapillarity; reversible 3D deformations of solid substrates with low elastic moduli from the surface tension of deposited drops. This study explores permanent deformations caused by liquid drops on immiscible yield stress substrates. We hypothesize that the substrate's rheological properties play a major role in determining the shape and stability of the drop-substrate interface, and govern partial or full embedding into the substrate.

Experiments: Substrate yield stress magnitudes are modified through altering the mixture ratios of petroleum jelly to paraffin oil. Water drops are deposited on substrates and deformation profiles of the deformed interface are quantified.

Findings: Above a critical Bingham-Capillary number, which characterizes the ratio of yield stress magnitude to surface tension, deposited water drops deform the substrate surface permanently, but minimally. Below this value, drops become increasingly embedded as the substrate yield stress magnitude decreases, with larger indentation depths and increased circumferential ridge heights. With sufficiently low yield stress magnitudes, where surface tension forces dominate over yield stress forces, the plastically deformed ridges fully encapsulate the liquid drop surface, resulting in full drop embedding within the substrate. These results advance knowledge of interfacial wetting on soft yield stress substrates and has implications for binary fluids, functional materials, and new drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.103DOI Listing

Publication Analysis

Top Keywords

yield stress
32
stress substrates
12
surface tension
12
partial full
8
drop embedding
8
yield
8
immiscible yield
8
stress
8
tension deposited
8
substrate yield
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!