The hierarchical dense structure induced high stability to NiCoB-based electrode for electrochemical energy storage.

J Colloid Interface Sci

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China. Electronic address:

Published: August 2024

The construction of stable hierarchical surfaces through structural engineering is the key to improve reactive active sites and cycle stability to achieve high cycle performance of supercapacitors (SCs). In this work, the NiCo-LDH nanoflower as a structure guide agent was used to support NiCoB nanosheets to form a dense and stable hierarchical structure, thereby exposing more active sites and improving cycle stability. Due to the hierarchical stable surface structure, the NiCoB-0.3@NiCo-LDH-30 electrode has an excellent specific capacitance of 2710F g at 1 A/g due to the excellent electrochemical active surface area (1259 mF cm), improving the OH diffusion coefficient (2.4 × 10 cm s) and decreasing ionic diffusion barrier. After 5000 cycles, NiCoB-0.3@NiCo-LDH-30 electrode still has 92.6 % initial specific capacitance. In order to balance the energy density decrease caused by the capacitance imbalance between positive and negative electrodes, the cubed carbon (Co-C) derived from cobalt metal organic frameworks (Co-MOFs) as cathode with a good specific capacitance of 220F g at 1 A/g is prepared. The assembled NiCoB-0.3@NiCo-LDH-30//Co-C hybrid SCs (HSCs), which are assembled with NiCoB-0.3@NiCo-LDH-30 electrode as anode and Co-C electrode as cathode, displays an energy density of 75 Wh kg at a power density of 741 W kg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.132DOI Listing

Publication Analysis

Top Keywords

nicob-03@nico-ldh-30 electrode
12
specific capacitance
12
stable hierarchical
8
active sites
8
cycle stability
8
energy density
8
electrode
5
hierarchical
4
hierarchical dense
4
structure
4

Similar Publications

Hierarchical Porous Aggregate-Enabled Chromatography-Inspired Single-Sensor E-Nose for Volatile Monitoring.

ACS Sens

January 2025

School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.

Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.

View Article and Find Full Text PDF

Background: Cochlear implants (CI) with off-the-ear (OTE) and behind-the-ear (BTE) speech processors differ in user experience and audiological performance, impacting speech perception, comfort, and satisfaction.

Objectives: This systematic review explores audiological outcomes (speech perception in quiet and noise) and non-audiological factors (device handling, comfort, cosmetics, overall satisfaction) of OTE and BTE speech processors in CI recipients.

Methods: We conducted a systematic review following PRISMA-S guidelines, examining Medline, Embase, Cochrane Library, Scopus, and ProQuest Dissertations and Theses.

View Article and Find Full Text PDF

The influence of coadsorbed ions on adsorbate diffusion, an inherent effect at solid-liquid interfaces, was studied for adsorbed sulfur on Ag(100) electrodes in the presence of bromide or iodide. Quantitative in situ high-speed scanning tunnelling microscopy (video-STM) measurements were performed both in the potential regime of the c(2×2) halide adlayer at its saturation coverage and in the regime of a disordered adlayer where the halide coverage increases with potential. These studies reveal a surprising non-monotonic potential dependence of Sad diffusion with an initial increase with halide coverage, followed by a decrease upon halide adlayer ordering into the c(2×2) structure.

View Article and Find Full Text PDF

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!