Bone fracture as a consequence of colorectal cancer (CRC) and associated osteoporosis (OP) is considered a risk factor for increasing the mortality rate among CRC patients. SNHG16/ miRNA-146a/ TRAF6 signaling pathway is a substantial contributor to neoplastic evolution, progression, and metastasis. Here, we investigated the effect of zoledronate (ZOL) on the growth of CRC and associated OP in a mouse model. Thirty Balb/c mice were divided into Naïve, azoxymethane (AOM)/dextran sodium sulfate (DSS), and ZOL groups. Body weight and small nucleolar RNA host gene 16 (SNHG16) expression, microRNA-146a, and TRAF6 in bone, colon, and stool were investigated. Samples of colon and bone were collected and processed for light microscopic, immunohistochemical staining for cytokeratin 20 (CK20), nuclear protein Ki67 (pKi-67), and caudal type homeobox transcription factor 2 (CDx2) in colon and receptor activator of nuclear factor kB (RANK) and osteoprotegerin (OPG) in bone. A computerized tomography (CT) scan of the femur and tibia was studied. ZOL produced a significant decrease in the expression of SNHG16 and TRAF6 and an increase in miRNA-146a in the colon and bone. ZOL administration improved the histopathological changes in the colon, produced a significant decrease in CK20 and Ki-67, and increased CDx2 expressions. In bone, ZOL prevented osteoporotic changes and tumour cell invasion produced a significant decrease in RANK and an increase in OPG expressions, alongside improved bone mineral density in CT scans. ZOL could be a promising preventive therapy against colitis-induced cancer and associated OP via modulation expression of SNHG16, miRNA-146a, and TRAF6.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.112125DOI Listing

Publication Analysis

Top Keywords

produced decrease
12
snhg16/ mirna-146a/
8
mirna-146a/ traf6
8
traf6 signaling
8
signaling pathway
8
colorectal cancer
8
cancer associated
8
associated osteoporosis
8
mouse model
8
crc associated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!