Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Goal-directed manipulation of internal representations is a key element of human flexible behaviour, while consciousness is commonly associated with higher-order cognition and human flexibility. Current perspectives have only partially linked these processes, thus preventing a clear understanding of how they jointly generate flexible cognition and behaviour. Moreover, these limitations prevent an effective exploitation of this knowledge for technological scopes. We propose a new theoretical perspective that extends our 'three-component theory of flexible cognition' toward higher-order cognition and consciousness, based on the systematic integration of key concepts from Cognitive Neuroscience and AI/Robotics. The theory proposes that the function of conscious processes is to support the alignment of representations with multi-level goals. This higher alignment leads to more flexible and effective behaviours. We analyse here our previous model of goal-directed flexible cognition (validated with more than 20 human populations) as a starting GARIM-inspired model. By bridging the main theories of consciousness and goal-directed behaviour, the theory has relevant implications for scientific and technological fields. In particular, it contributes to developing new experimental tasks and interpreting clinical evidence. Finally, it indicates directions for improving machine learning and robotics systems and for informing real-world applications (e.g., in digital-twin healthcare and roboethics).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106292 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!