A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

All-Atom Photoinduced Charge Transfer Dynamics in Condensed Phase via Multistate Nonlinear-Response Instantaneous Marcus Theory. | LitMetric

All-Atom Photoinduced Charge Transfer Dynamics in Condensed Phase via Multistate Nonlinear-Response Instantaneous Marcus Theory.

J Chem Theory Comput

Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China.

Published: May 2024

Photoinduced charge transfer (CT) in the condensed phase is an essential component in solar energy conversion, but it is challenging to simulate such a process on the all-atom level. The traditional Marcus theory has been utilized for obtaining CT rate constants between pairs of electronic states but cannot account for the nonequilibrium effects due to the initial nuclear preparation. The recently proposed instantaneous Marcus theory (IMT) and its nonlinear-response formulation allow for incorporating the nonequilibrium nuclear relaxation to electronic transition between two states after the photoexcitation from the equilibrium ground state and provide the time-dependent rate coefficient. In this work, we extend the nonlinear-response IMT method for treating photoinduced CT among general multiple electronic states and demonstrate it in the organic photovoltaic carotenoid-porphyrin-fullerene triad dissolved in explicit tetrahydrofuran solvent. All-atom molecular dynamics simulations were employed to obtain the time correlation functions of energy gaps, which were used to generate the IMT-required time-dependent averages and variances of the relevant energy gaps. Our calculations show that the multistate IMT could capture the significant nonequilibrium effects due to the initial nuclear state preparation, and this is corroborated by the substantial differences between the population dynamics predicted by the multistate IMT and the Marcus theory, where the Marcus theory underestimates the population transfer. The population dynamics by multistate IMT is also shown to have a better agreement with the all-atom nonadiabatic mapping dynamics than the Marcus theory does. Because the multistate nonlinear-response IMT is straightforward and cost-effective in implementation and accounts for the nonequilibrium nuclear effects, we believe this method offers a practical strategy for studying charge transfer dynamics in complex condensed-phase systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099976PMC
http://dx.doi.org/10.1021/acs.jctc.4c00010DOI Listing

Publication Analysis

Top Keywords

marcus theory
24
charge transfer
12
multistate imt
12
photoinduced charge
8
transfer dynamics
8
condensed phase
8
multistate nonlinear-response
8
instantaneous marcus
8
electronic states
8
nonequilibrium effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!