Rotator cuff injuries result in more than 500,000 surgeries annually in the United States, many of which fail. These surgeries typically involve repair of the injured tendon and removal of the subacromial bursa, a synovial-like tissue that sits between the rotator cuff and the acromion. The subacromial bursa has been implicated in rotator cuff pathogenesis and healing. Using proteomic profiling of bursa samples from nine patients with rotator cuff injury, we show that the bursa responds to injury in the underlying tendon. In a rat model of supraspinatus tenotomy, we evaluated the bursa's effect on the injured supraspinatus tendon, the uninjured infraspinatus tendon, and the underlying humeral head. The bursa protected the intact infraspinatus tendon adjacent to the injured supraspinatus tendon by maintaining its mechanical properties and protected the underlying humeral head by maintaining bone morphometry. The bursa promoted an inflammatory response in injured rat tendon, initiating expression of genes associated with wound healing, including and . These results were confirmed in rat bursa organ cultures. To evaluate the potential of the bursa as a therapeutic target, polymer microspheres loaded with dexamethasone were delivered to the intact bursae of rats after tenotomy. Dexamethasone released from the bursa reduced expression in injured rat supraspinatus tendon, suggesting that the bursa could be used for drug delivery to reduce inflammation in the healing tendon. Our findings indicate that the subacromial bursa contributes to healing in underlying tissues of the shoulder joint, suggesting that its removal during rotator cuff surgery should be reconsidered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646107 | PMC |
http://dx.doi.org/10.1126/scitranslmed.add8273 | DOI Listing |
Jpn J Radiol
January 2025
Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.
Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.
View Article and Find Full Text PDFCurr Sports Med Rep
January 2025
Nellis Family Medicine Residency Program, Nellis Air Force Base, Las Vegas, NV.
Am J Sports Med
January 2025
Department of Sports Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Background: Arthroscopic repair with the biceps rerouting (BR) technique has been determined to lead to promising clinical and biomechanical outcomes for treating large-to-massive rotator cuff tears (LMRCTs). However, the in vivo effects of BR on glenohumeral kinematics during functional shoulder movements have not been fully elucidated.
Purpose: To investigate whether BR provides a better restoration of shoulder kinematics compared with conventional rotator cuff repair (RCR).
Am J Sports Med
January 2025
Sports Medicine Center, Department of Orthopaedic Surgery/Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Traditional superior capsular reconstruction (SCR) with biceps tendon transposition (TB) alone for irreparable massive rotator cuff tears (IMRCTs) has demonstrated a high retear rate, highlighting the need for alternative approaches. Therefore, SCR using a peroneus longus tendon graft (PLG) combined with TB (PLG-TB) should be clinically studied.
Purpose: To compare the clinical and radiological outcomes of SCR using the PLG-TB technique versus the TB technique alone for IMRCT.
Am J Sports Med
January 2025
Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.
Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.
Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!