A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a nomogram for predicting 28-day mortality in patients with ischemic stroke. | LitMetric

Background/aim: We aimed to construct a validated nomogram model for predicting short-term (28-day) ischemic stroke mortality among critically ill populations.

Materials And Methods: We collected raw data from the Medical Information Mart for Intensive Care IV database, a comprehensive repository renowned for its depth and breadth in critical care information. Subsequently, a rigorous analytical framework was employed, incorporating a 10-fold cross-validation procedure to ensure robustness and reliability. Leveraging advanced statistical methodologies, specifically the least absolute shrinkage and selection operator regression, variables pertinent to 28-day mortality in ischemic stroke were meticulously screened. Next, binary logistic regression was utilized to establish nomogram, then applied concordance index to evaluate discrimination of the prediction models. Predictive performance of the nomogram was assessed by integrated discrimination improvement (IDI) and net reclassification index (NRI). Additionally, we generated calibration curves to assess calibrating ability. Finally, we evaluated the nomogram's net clinical benefit using decision curve analysis (DCA), in comparison with scoring systems clinically applied under common conditions.

Results: A total of 2089 individuals were identified and assigned into training (n = 1443) or validation (n = 646) cohorts. Various identified risk factors, including age, ethnicity, marital status, underlying metastatic solid tumor, Charlson comorbidity index, heart rate, Glasgow coma scale, glucose concentrations, white blood cells, sodium concentrations, potassium concentrations, mechanical ventilation, use of heparin and mannitol, were associated with short-term (28-day) mortality in ischemic stroke individuals. A concordance index of 0.834 was obtained in the training dataset, indicating that our nomogram had good discriminating ability. Results of IDI and NRI in both cohorts proved that our nomogram had positive improvement of predictive performance, compared to other scoring systems. The actual and predicted incidence of mortality showed favorable concordance on calibration curves (P > 0.05). DCA curves revealed that, compared with scoring systems clinically used under common conditions, the constructed nomogram yielded a greater net clinical benefit.

Conclusions: Utilizing a comprehensive array of fourteen readily accessible variables, a prognostic nomogram was meticulously formulated and rigorously validated to provide precise prognostication of short-term mortality within the ischemic stroke cohort.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042708PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302227PLOS

Publication Analysis

Top Keywords

ischemic stroke
20
28-day mortality
12
mortality ischemic
12
scoring systems
12
nomogram
8
short-term 28-day
8
predictive performance
8
calibration curves
8
net clinical
8
systems clinically
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!