Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells. This nanoprobe has excellent signal-to-noise ratio imaging capabilities for the single-particle tracking (SPT) of biomolecules. Our finding elucidated the enhanced ECL mechanism of CDs-QDs in the presence of reactive oxygen species through photoluminescence, electrochemistry, and ECL techniques. We further tracked the movement of single particles on membrane nanotubes between live cells and confirmed that the ECL-based SPT technique using CD-QD nanoparticles is an effective approach for monitoring the transport behaviors of biomolecules on membrane nanotubes between live cells. This opens a promising avenue for the advancement of ECL-based single-particle detection and the dynamic quantitative imaging of biomolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c00805 | DOI Listing |
Sci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFFront Chem
December 2024
Circa Renewable Chemistry Institute, Department of Chemistry, University of York, York, United Kingdom.
This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:
Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
Renewable electricity-driven CO electroreduction provides a promising route toward carbon neutrality and sustainable chemical production. Nevertheless, the viability of this route faces constraints of catalytic efficiency and durability in near-neutral electrolytes at industrial-scale current densities, mechanistically originating from unfavorable accommodation of H species from water dissociation. Herein, a new strategy is reported to accelerate water dissociation by the rich surface hydroxyl on bismuth subcarbonate nanosheets in situ electrochemical transformed from bismuth hydroxide nanotube precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!