Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The removal of outliers is crucial for establishing correspondence between two images. However, when the proportion of outliers reaches nearly 90%, the task becomes highly challenging. Existing methods face limitations in effectively utilizing geometric transformation consistency (GTC) information and incorporating geometric semantic neighboring information. To address these challenges, we propose a Multi-Stage Geometric Semantic Attention (MSGSA) network. The MSGSA network consists of three key modules: the multi-branch (MB) module, the GTC module, and the geometric semantic attention (GSA) module. The MB module, structured with a multi-branch design, facilitates diverse and robust spatial transformations. The GTC module captures transformation consistency information from the preceding stage. The GSA module categorizes input based on the prior stage's output, enabling efficient extraction of geometric semantic information through a graph-based representation and inter-category information interaction using Transformer. Extensive experiments on the YFCC100M and SUN3D datasets demonstrate that MSGSA outperforms current state-of-the-art methods in outlier removal and camera pose estimation, particularly in scenarios with a high prevalence of outliers. Source code is available at https://github.com/shuyuanlin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2024.3391002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!