Nitrous oxide (NO) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on NO emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that NO emission was mainly concentrated in the cooling and maturation periods, and the cumulative NO emissions decreased as the C/N ratio increased. Specifically, the cumulative NO emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH-N, and NO-N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in NO emissions. In conclusion, increasing the C/N ratio effectively contributed to NO reduction during vegetable waste composting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33427-2 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.
Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Sci Rep
December 2024
Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
Exploring the components of soil organic carbon (SOC) and aggregate stability across different elevations is crucial to assessing the stability of SOC in subtropical forest ecosystems under climate change. In this study, we investigated the spatial variation of active carbon (C) compositions, aggregate distribution, and stability in Chinese fir (Cunninghamia lanceolata) plantations across an elevation gradient from 750 to 1150 m a.s.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
University of Münster, Institute of Landscape Ecology, Münster, Germany.
Temperate forests cover 25% of the world's forest area and most of them are managed for timber production. To increase yields, native deciduous trees have been commonly replaced by fast-growing conifers, especially in Western and Central Europe. Despite the importance of forest soils for a variety of ecosystem functions, the effects of forest management intensity on soil biological processes have not yet been sufficiently understood.
View Article and Find Full Text PDFPlant Soil
May 2024
Department of Geography, McGill University, Montreal, Canada.
Aims: Peat is used as a major ingredient of growing media in horticulture. Peat extracted from bogs can be acidic and low in nutrient availability and is therefore mixed with liming agents, nutrients, surfactants, perlite and so on. This study aims to estimate the rates at which raw peat and the modified peat ('growing media') decompose to release carbon dioxide (CO), to estimate the release of carbon (C) from liming agents and to estimate how peat biogeochemistry is changed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!