Affordable and abundant sources of green hydrogen can give a large impetus to the Energy Transition. While conventional water electrolysis has positioned itself as a prospective candidate for this purpose, it lacks cost competitiveness. Hybrid water electrolysis (HWE) has been praised for its ability to address the issues of conventional water electrolysis due to its decreased energy requirements and its ability to generate value-added products, among other advantages. In this perspective, we discuss the challenges related to the applicability of HWE, using the glycerol oxidation reaction as an example, and we identify pitfalls often found in the literature. Reported catalysts, especially those based on abundant materials, suffer from a severe selectivity-activity tradeoff, hampering their industrial applicability due to large costs associated with product separation and purification. Additionally, testing electrocatalysts under conditions that are relevant for their applications is encouraged, yet these conditions are largely unknown, as in-depth knowledge of the catalytic mechanisms is largely missing. Lastly, an opportunity to increase the amount of interdisciplinary research concerning both the engineering requirements and financial performance of HWE is discussed. Increased focus on these objectives may boost the development of HWE on an industrial scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202400182 | DOI Listing |
Materials (Basel)
December 2024
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.
View Article and Find Full Text PDFMolecules
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China.
Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (WC) is one of the most promising non-noble-metal-based catalysts with low cost, replicable catalytic performance, and durability. However, the preparation access to scalable production of WC catalysts is inevitable.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea.
The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks.
View Article and Find Full Text PDFLangmuir
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!