Reinforcement Learning May Demystify the Limited Human Motor Learning Efficacy Due to Visual-Proprioceptive Mismatch.

Int J Neural Syst

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.

Published: July 2024

Vision and proprioception have fundamental sensory mismatches in delivering locational information, and such mismatches are critical factors limiting the efficacy of motor learning. However, it is still not clear how and to what extent this mismatch limits motor learning outcomes. To further the understanding of the effect of sensory mismatch on motor learning outcomes, a reinforcement learning algorithm and the simplified biomechanical elbow joint model were employed to mimic the motor learning process in a computational environment. By applying a reinforcement learning algorithm to the motor learning of elbow joint flexion task, simulation results successfully explained how visual-proprioceptive mismatch limits motor learning outcomes in terms of motor control accuracy and task completion speed. The larger the perceived angular offset between the two sensory modalities, the lower the motor control accuracy. Also, the more similar the peak reward amplitude of the two sensory modalities, the lower the motor control accuracy. In addition, simulation results suggest that insufficient exploration rate limits task completion speed, and excessive exploration rate limits motor control accuracy. Such a speed-accuracy trade-off shows that a moderate exploration rate could serve as another important factor in motor learning.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065724500370DOI Listing

Publication Analysis

Top Keywords

motor learning
32
motor control
16
control accuracy
16
reinforcement learning
12
motor
12
limits motor
12
learning outcomes
12
exploration rate
12
learning
10
visual-proprioceptive mismatch
8

Similar Publications

Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing.

Nat Commun

January 2025

Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.

Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).

View Article and Find Full Text PDF

A substantial proportion of patients suffer from Post-COVID Syndrome (PCS) with fatigue and impairment of memory and concentration being the most important symptoms. We here set out to perform in-depth neuropsychological assessment of PCS patients referred to the Neurologic PCS clinic compared to patients without sequelae after COVID-19 (non-PCS) and healthy controls (HC) to decipher the most prevalent cognitive deficits. We included n = 60 PCS patients with neurologic symptoms, n = 15 non-PCS patients and n = 15 healthy controls.

View Article and Find Full Text PDF

Speech processing involves a complex interplay between sensory and motor systems in the brain, essential for early language development. Recent studies have extended this sensory-motor interaction to visual word processing, emphasizing the connection between reading and handwriting during literacy acquisition. Here we show how language-motor areas encode motoric and sensory features of language stimuli during auditory and visual perception, using functional magnetic resonance imaging (fMRI) combined with representational similarity analysis.

View Article and Find Full Text PDF

Psychogenic erectile dysfunction (pED) is often accompanied by abnormal brain activities. This study aimed to develop an automaticclassifier to distinguish pED from healthy controls (HCs) by identified brain-basedcharacteristics. Resting-state functional magnetic resonance imaging data were acquired from 45 pED patients and 43 HCs.

View Article and Find Full Text PDF

Context: After completing rehabilitation, patients face a high risk of subsequent injury following anterior cruciate ligament reconstruction. It is important to identify potential barriers to patient success including clinician knowledge. The purpose of this study was to assess clinician knowledge of research related to anterior cruciate ligament reconstruction rehabilitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!