Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e. symbiogenesis) is hypothesized to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here, we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenization. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114475 | PMC |
http://dx.doi.org/10.1093/ismejo/wrae059 | DOI Listing |
Toxics
December 2024
Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.
Polycyclic aromatic hydrocarbons (PAHs) are known to have toxic effects on fish. In this study, we examined the effects of benz[a]anthracene (BaA), a type of PAH, on fish liver metabolism. Nibbler fish () were intraperitoneally injected with BaA (10 ng/g body weight) four times over a 10-day period.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Russia.
Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
A novel bacterial strain, DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH-N.
View Article and Find Full Text PDFMicroorganisms
December 2024
Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, CRB14.
View Article and Find Full Text PDFMicroorganisms
December 2024
Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
Sulfidogenic bacteria cause numerous issues in the oil industry since they produce sulfide, corroding steel equipment, reducing oil quality, and worsening the environmental conditions in oil fields. The purpose of this work was to isolate and taxonomically identify the sulfidogenic bacteria responsible for the corrosion of steel equipment at the Karazhanbas oil field (Kazakhstan). In this study, we characterized five sulfidogenic strains of the genera , , and isolated from the formation water of the Karazhanbas oil field (Kazakhstan).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!