Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Welding of thermoplastics is a common practice in many industrial sectors, but it has yet to be realized with fluids. Here, the thermal welding of liquids by using the assembly and jamming of nanoparticle surfactants (NPSs) at liquid-liquid interfaces is reported. By fine-tuning the dynamic interaction strength within NPSs, the interfacial activity of NPSs, as well as the binding energy of NPSs to the interface can be precisely controlled, leading to a dynamic exchange of NPSs, maximizing the reduction in the interfacial energy. With NPSs jammed at the interface, the structures of liquids can be manipulated to complex geometries by applying an external force and, due to the temperature responsiveness of NPSs, when bringing liquids into contact and heating the system, welding of liquids can be achieved. This work provides a straightforward strategy for the construction of modular all-liquid fluidics, opening up numerous opportunities in fields like biotechnology, healthcare, and materials science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202403015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!