Lithium-sulfur batteries (LSBs) show promise for achieving a high energy density of 500 W h kg, despite challenges such as poor cycle life and low energy efficiency due to sluggish redox kinetics of lithium polysulfides (LiPSs) and sulfur's electronic insulating nature. We present a novel 2D TiC Mxene on a 2D graphitic carbon nitride (g-CN) heterostructure designed to enhance LiPS conversion kinetics and adsorption capacity. In a pouch cell configuration with lean electrolyte conditions (∼5 μL mg), the g-CN-Mx/S cathode exhibited excellent rate performance, delivering ∼1061 mA h g at C/8 and retaining ∼773 mA h g after 190 cycles with a Coulombic efficiency (CE) of 92.7%. The battery maintained a discharge capacity of 680 mA h g even at 1.25 C. It operated reliably at an elevated sulfur loading of 5.9 mg cm, with an initial discharge capacity of ∼900 mA h g and a sustained CE of over 83% throughout 190 cycles. Postmortem XPS and EIS analyses elucidated charge-discharge cycle-induced changes, highlighting the potential of this heterostructured cathode for commercial garnet LSB development.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh00200hDOI Listing

Publication Analysis

Top Keywords

lean electrolyte
8
electrolyte conditions
8
190 cycles
8
discharge capacity
8
advancing lithium-sulfur
4
lithium-sulfur battery
4
battery efficiency
4
efficiency utilizing
4
utilizing 2d/2d
4
2d/2d g-cn@mxene
4

Similar Publications

Binary Metal Alloy Electrocatalyst Synergistically Accelerates the Bidirectional Polysulfide Conversions in Lithium-Sulfur Batteries.

Nano Lett

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The sluggish redox kinetics of polysulfides and the resulting shuttle effect remain significant challenges for the practical utilization of lithium-sulfur (Li-S) batteries. To address the unidirectional catalytic limitations of conventional electrocatalysts, we herein report a binary metal (CoNi) alloy embedded in a carbon matrix on carbon nanofibers (CoNi@C-CNFs) as a highly efficient electrocatalyst to accelerate bidirectional polysulfide conversions. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) reveals a significantly improved catalytic effect of the CoNi alloy toward polysulfide conversions after introducing the Ni component.

View Article and Find Full Text PDF

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

The impeding ban on per- and polyfluoroalkyl substances (PFAS) prompted researchers to focus on hydrocarbon-based materials as constituents of next-generation proton exchange membranes (PEMs) for polymer electrolyte fuel cells (PEFCs). Here, we report on the fuel cell performance and durability of fluorine-lean PEMs prepared by the post-sulfonation of co-grafted α-methylstyrene (AMS) and 2-methylene glutaronitrile (MGN) monomers into preirradiated 12 µm polyvinylidene fluoride (PVDF) base film. The membranes were subjected to two distinctly different accelerated stress test (AST) protocols performed at open-circuit voltage (OCV): the US Department of Energy-similar chemical AST (90 °C, 30% relative humidity (RH), H/air, 1 bar), developed originally for perfluoroalkylsulfonic acid (PFSA) membranes, and the high relative humidity AST (80 °C, 100% RH, H/O, 2.

View Article and Find Full Text PDF

Towards Highly Stable Sn Electrolyte for Aqueous Tin Batteries Using Hydroquinone Antioxidant.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry and Shanghai Key Laboratory of Molecular, Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.

Sn redox chemistry in aqueous acidic electrolyte was characterized with high reversibility and kinetics, which is considered as competitive anode material for aqueous batteries. Unfortunately, divalent Sn is unstable in aqueous electrolyte. It was revealed that Sn is easy to be oxidized to tetravalent Sn by dissolved oxygen and then forms precipitate through hydrolysis process, leading to serious performance decay.

View Article and Find Full Text PDF

The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid-state products, reduce the LiS film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium-sulfur (Li-S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!