Introduction: The use of online follow-up services (OFUS) is becoming an increasingly important supplement to hospital care. Through OFUS, patients can find their doctors in online health communities (OHCs) and receive remote medical follow-ups after hospital treatment. However, the rate of effective use of OFUS by current patients is still low, and there is an urgent need for research to investigate the online information factors that affect patients' effective use of OFUS.

Methods: Based on the elaboration likelihood model (ELM) of persuasion and an analysis of a panel dataset including 3,672 doctors in a leading OHC in China, this study explores how online information from doctors' knowledge contributions and patient feedback influences patients' effective use of OFUS.

Results: The results show that both doctors' knowledge contributions and patient feedback positively influence patients' effective use of OFUS. Doctors' paid knowledge contributions and patients' paid feedback have stronger persuasive effects than doctors' free knowledge contributions and patients' free feedback, respectively. Moreover, there is a substitutional relationship between doctors' paid and free knowledge contributions and between patients' paid and free feedback in influencing patients' effective use of OFUS.

Discussion: The findings of this study suggest that OHC platforms and healthcare providers should account not only for the persuasive effects of doctors' knowledge contributions and patient feedback but also for influential differences and relationships between the types of doctors' knowledge contributions and patient feedback to better persuade patients to effectively use OFUS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036378PMC
http://dx.doi.org/10.3389/fpubh.2024.1375144DOI Listing

Publication Analysis

Top Keywords

knowledge contributions
28
patients' effective
20
doctors' knowledge
16
contributions patient
16
patient feedback
16
contributions patients'
12
doctors online
8
patients'
8
online follow-up
8
follow-up services
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!