Background And Aim: Solid organ transplantation remains a life-saving therapeutic option for patients with end-stage organ dysfunction. Acute cellular rejection (ACR), dominated by dendritic cells (DCs) and CD4 T cells, is a major cause of post-transplant mortality. Inhibiting DC maturation and directing the differentiation of CD4 T cells toward immunosuppression are keys to inhibiting ACR. We propose that oxymatrine (OMT), a quinolizidine alkaloid, either alone or in combination with rapamycin (RAPA), attenuates ACR by inhibiting the mTOR-HIF-1α pathway.
Methods: Graft damage was assessed using haematoxylin and eosin staining. Intragraft CD11c and CD4 cell infiltrations were detected using immunohistochemical staining. The proportions of mature DCs, T helper (Th) 1, Th17, and Treg cells in the spleen; donor-specific antibody (DSA) secretion in the serum; mTOR-HIF-1α expression in the grafts; and CD4 cells and bone marrow-derived DCs (BMDCs) were evaluated using flow cytometry.
Results: OMT, either alone or in combination with RAPA, significantly alleviated pathological damage; decreased CD4 and CD11c cell infiltration in cardiac allografts; reduced the proportion of mature DCs, Th1 and Th17 cells; increased the proportion of Tregs in recipient spleens; downregulated DSA production; and inhibited mTOR and HIF-1α expression in the grafts. OMT suppresses mTOR and HIF-1α expression in BMDCs and CD4 T cells .
Conclusions: Our study suggests that OMT-based therapy can significantly attenuate acute cardiac allograft rejection by inhibiting DC maturation and CD4 T cell responses. This process may be related to the inhibition of the mTOR-HIF-1α signaling pathway by OMT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036008 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e29448 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!