Purpose: To develop a multimodal deep transfer learning (DTL) fusion model using optical coherence tomography angiography (OCTA) images to predict the recurrence of retinal vein occlusion (RVO) and macular edema (ME) after three consecutive anti-VEGF therapies.

Methods: This retrospective cross-sectional study consisted of 2800 B-scan OCTA macular images collected from 140 patients with RVO-ME. The central macular thickness (CMT) > 250 μm was used as a criterion for recurrence in the three-month follow-up after three injections of anti-VEGF therapy. The qualified OCTA image preprocessing and the lesion area segmentation were performed by senior ophthalmologists. We developed and validated the clinical, DTL, and multimodal fusion models based on clinical and extracted OCTA imaging features. The performance of the models and experts predictions were evaluated using several performance metrics, including the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.

Results: The DTL models exhibited higher prediction efficacy than the clinical models and experts' predictions. Among the DTL models, the Vgg19 performed better than that of the other models, with an AUC of 0.968 (95 % CI, 0.943-0.994), accuracy of 0.913, sensitivity of 0.922, and specificity of 0.902 in the validation cohort. Moreover, the fusion Vgg19 model showed the highest prediction efficacy among all the models, with an AUC of 0.972 (95 % CI, 0.946-0.997), accuracy of 0.935, sensitivity of 0.935, and specificity of 0.934 in the validation cohort.

Conclusions: Multimodal fusion DTL models showed robust performance in predicting RVO-ME recurrence and may be applied to assist clinicians in determining patients' follow-up time after anti-VEGF therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036002PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e29334DOI Listing

Publication Analysis

Top Keywords

anti-vegf therapy
12
dtl models
12
multimodal deep
8
deep transfer
8
transfer learning
8
retinal vein
8
vein occlusion
8
macular edema
8
multimodal fusion
8
models
8

Similar Publications

Purpose: To evaluate changes in the retinal microvasculature using widefield swept-source optical coherence tomography angiography (SS-OCTA) following three anti-vascular endothelial growth factor (anti-VEGF) loading injections for diabetic macular edema (DME).

Methods: Thirty-four treatment-naïve patients with DME received an initial three loading injections, followed by injections on an as-needed basis. Macular ischemia was evaluated based on the foveal avascular zone (FAZ) area, perfusion density, and vessel density on a 3 × 3-mm SS-OCTA image.

View Article and Find Full Text PDF

Aim: This systematic review and meta-analysis aimed to evaluate the safety and efficacy of combined laser and anti-VEGF therapy for (retinopathy of prematurity ROP), focusing on both structural and functional outcomes.

Methods: A comprehensive search was conducted in multiple databases to identify randomized controlled trials (RCTs) that investigated combination therapy for ROP. The PRISMA guidelines were followed.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer is a particularly aggressive type of breast cancer that is closely associated with abnormal vascularization within the tumor. However, traditional anti-VEGF therapies and other treatments have limited efficacy. Tumor-associated macrophages (TAMs) induce and regulate tumor angiogenesis.

View Article and Find Full Text PDF

: Our purpose was to appraise the efficacy and safety of intravitreous vascular endothelial growth factor inhibitor (anti-VEGF) therapy combined with steroids for persistent diabetic macular edema. : A systematic review was conducted of the research evaluating the combination therapy of anti-VEGF and steroids for persistent diabetic macular edema compared to anti-VEGF alone. A meta-analysis was performed using a protocol registered in PROSPERO (CRD42023476333).

View Article and Find Full Text PDF

Immune Microenvironment and the Effect of Vascular Endothelial Growth Factor Inhibition in Hepatocellular Carcinoma.

Int J Mol Sci

December 2024

Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita 761-0793, Kagawa, Japan.

Systemic therapy for unresectable hepatocellular carcinoma (HCC) has progressed with the development of multiple kinases, such as vascular endothelial growth factor (VEGF) signaling, targeting cancer growth and angiogenesis. Additionally, the efficacy of sorafenib, regorafenib, lenvatinib, ramucirumab, and cabozantinib has been demonstrated in various clinical trials, and they are now widely used in clinical practice. Furthermore, the development of effective immune checkpoint inhibitors has progressed in systemic therapy for unresectable HCC, and atezolizumab + bevacizumab (atezo/bev) therapy and durvalumab + tremelimumab therapy are now recommended as first-line treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!