Objectives: The free Achilles tendon is defined as the region of tendon distal to the soleus which is "unbuttressed," i.e., unsupported by muscular tissue. We reasoned that a relative lack of distal buttressing could place the tendon at a greater risk for developing Achilles tendinopathy. Therefore, our primary goal was to compare the free Achilles tendon length between those with midportion or insertional Achilles tendinopathy and healthy controls.

Design: This is a retrospective case-control study. . Hospital in Vancouver, Canada. . 66 cases with Achilles tendinopathy (25 insertional, 41 midportion) consecutively drawn from a hospital database within a 5-year period and matched to 66 controls (without tendinopathy) based on sex, age, and weight. . Odds ratio of the risk of developing Achilles tendinopathy given the length of free tendon, defined anatomically on MRI, after adjustment for confounders.

Results: MRI-defined free Achilles tendon length is a statistically significant predictor of having midportion Achilles tendinopathy (odds ratio = 0.53, 95% confidence interval 1.13 to 2.07). Midportion Achilles tendinopathy cases had significantly longer free tendons ( = 51.2 mm,  = 26.9 mm) compared to controls ( = 40.8 mm,  = 20.0 mm), = 0.007. However, there was no significant difference between the free Achilles tendon lengths in insertional AT cases ( = 47.9 mm,  = 15.1 mm) and controls ( = 39.2 mm,  = 17.9 mm), = 0.158. Free Achilles tendon length was also correlated with the tendon thickness among those with Achilles tendinopathy,  = 0.25, and = 0.003.

Conclusions: The MRI-defined length of the free Achilles tendon is positively associated with the risk of midportion Achilles tendinopathy. A relative lack of distal muscular buttressing of the Achilles tendon may therefore influence the development of tendinopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022772PMC
http://dx.doi.org/10.1155/2022/6585980DOI Listing

Publication Analysis

Top Keywords

achilles tendon
32
achilles tendinopathy
32
free achilles
28
achilles
16
tendon
12
tendon length
12
midportion achilles
12
tendinopathy
11
retrospective case-control
8
case-control study
8

Similar Publications

Exercise influences clinical Achilles tendon health in humans, but animal models of exercise-related Achilles tendon changes are lacking. Moreover, previous investigations of the effects of treadmill running exercise on rat Achilles tendon demonstrate variable outcomes. Our objective was to assess the functional, structural, cellular, and biomechanical impacts of treadmill running exercise on rat Achilles tendon with sensitive in and ex vivo approaches.

View Article and Find Full Text PDF

Integrating electrospun aligned fiber scaffolds with bovine serum albumin-basic fibroblast growth factor nanoparticles to promote tendon regeneration.

J Nanobiotechnology

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.

Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.

Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.

View Article and Find Full Text PDF

Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon.

View Article and Find Full Text PDF

Diabetes mellitus type 2 (DMT2) promotes Achilles tendon (AS) degeneration and exercise could modulate features of DMT2. Hence, this study investigated whether tenocytes of non DMT2 and DMT2 rats respond differently to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis factor (TNF)α or cyclic stretch. AS tenocytes, isolated from DMT2 (fa/fa) or non DMT2 (lean, fa/+) adult Zucker Diabetic Fatty (ZDF) rats, were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L vs.

View Article and Find Full Text PDF

Achilles tendon ruptures are prevalent among physically active adults and can lead to sural nerve injuries (SNIs) due to the anatomical proximity of the sural nerve to the Achilles tendon. While SNIs are well-recognized in surgical contexts, their occurrence following nonoperative treatments, which are often preferred for their lower risk of surgical complications, remains less documented and poorly understood. This report describes a case of a 30-year-old active male who developed chronic traction sural neuropathy after opting for nonoperative treatment of an acute complete Achilles tendon rupture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!