We investigate a highly multiplexing readout for depth-of-interaction (DOI) and time-of-flight PET detector consisting of an N×N crystals whose light outputs at the front and back ends are detected by using silicon photomultipliers (SiPM). The front N×N SiPM array is read by using a stripline (SL) configured to support discrimination of the row position of the signal-producing crystal. The back N×N SiPM array is similarly read by an SL for column discrimination. Hence, the detector has only four outputs. We built 4×4 and 8×8 detector modules (DM) by using 3.0×3.0×20 mm lutetium-yttrium oxyorthosilicates. The outputs were sampled and processed offline. For both DMs, crystal discrimination was successful. For the 4×4 DM, we obtained an average energy resolution (ER) of 14.1%, an average DOI resolution of 2.5 mm, a non DOI-corrected coincidence resolving time (CRT), measured in coincidence with a single-pixel reference detector, of about 495 ps. For the 8×8 DM, the average ER, average DOI resolution and average CRT were 16.4%, 2.9 mm, and 641 ps, respectively. We identified the intercrystal scattering as a probable cause for the CRT deterioration when the DM was increased from 4×4 to 8×8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034922PMC
http://dx.doi.org/10.1109/TRPMS.2024.3360942DOI Listing

Publication Analysis

Top Keywords

n×n sipm
8
sipm array
8
array read
8
4×4 8×8
8
average doi
8
doi resolution
8
detector
5
average
5
doi- tof-capable
4
tof-capable pet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!